Effect of lithographicallyinduced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

Article, Preprint English OPEN
Beardsley, R. P. ; Parkes, D. E. ; Zemen, J. ; Bowe, S. ; Edmonds, K. W. ; Reardon, C. ; Maccherozzi, F. ; Isakov, I. ; Warburton, P. A. ; Campion, R. P. ; Gallagher, B. L. ; Cavill, S. A. ; Rushforth, A. W. (2017)
  • Publisher: NATURE PUBLISHING GROUP
  • Journal: Scientific Reports, volume 7 (issn: 2045-2322, eissn: 2045-2322)
  • Related identifiers: doi: 10.1038/srep42107, pmc: PMC5301210
  • Subject: Condensed Matter - Mesoscale and Nanoscale Physics | 1000 | Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, WALL PROPAGATION, MEMORY, DRIVEN, ALLOYS, FILMS | Article
    mesheuropmc: equipment and supplies
    arxiv: Condensed Matter::Materials Science

We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.
  • References (28)
    28 references, page 1 of 3

    1. Fukami, S. et al. Low-current perpendicular domain wall motion cell for scalable high-speed MRAM. 2009 Symposium on VLSI Technology Digest of Technical Papers (2009).

    2. Gallagher, W. J. & Parkin, S. S. P. Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip. IBM J. Res. Dev. 50, 5-23 (2006).

    3. Parkin, S. S. P. Racetrack memory device. US Patent 6834005 (2012).

    4. Parkin, S. S. P., Hayashi, M. & oThmas, L. Magnetic Domain-Wall Racetrack Memory. Science 320, 190-194 (2008).

    5. Allwood, D. A., Xiong, G., Faulkner, C. C., Atkinson, D., Petit, D. & Cowburn, R. P. Magnetic Domain-Wall Logic. Science 309, 1688-1692 (2005).

    6. Ruediger, U., Yu, J., Zhang, S., Kent, A. D. & Parkin, S. S. P. Negative Domain Wall Contribution to the Resistivity of Microfabricated Fe Wires. Phys. Rev. Lett. 80, 5639-5642 (1998).

    7. De Ranieri, E. et al. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat. Mater. 12, 808-814 (2013).

    8. Beach, G. S. D., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. L. Dynamics of efild-driven domain-wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741-744 (2005).

    9. Hu, J.-M., Li, Z., Chen, L.-Q. & Nan, C.-W. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2, 553 (2011).

    10. Roy, K., Bandyopadhyay, S. & Atulasimha, J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl. Phys. Lett. 99, 063108 (2011).

  • Metrics
    No metrics available
Share - Bookmark