Refractometer based on fiber Bragg grating Fabry-Pérot cavity embedded with a narrow microchannel

Article English OPEN
Zhou, Kaiming ; Yan, Zhijun ; Zhang, Lin ; Bennion, Ian (2011)

We report on inscription of microchannels of different widths in optical fiber using femtosecond (fs) laser inscription assisted chemical etching and the narrowest channel has been created with a width down to only 1.2µm. Microchannels with 5µm and 35µm widths were fabricated together with Fabry-Pérot (FP) cavities formed by UV laser written fiber Bragg gratings (FBGs), creating high function and linear response refractometers. The device with a 5µm microchannel has exhibited a refractive index (RI) detection range up to 1.7, significantly higher than all fiber grating RI sensors. In addition, the microchannel FBG FP structures have been theoretically simulated showing excellent agreement with experimental measured characteristics.
  • References (7)

    15. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature 390(6656), 143-145 (1997).

    16. A. Muller, E. B. Flagg, J. R. Lawall, and G. S. Solomon, “Ultrahigh-finesse, low-mode-volume Fabry-Perot microcavity,” Opt. Lett. 35(13), 2293-2295 (2010).

    17. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31(17), 2559-2561 (2006).

    18. J. Petrovic, Y. Lai, and I. Bennion, “Numerical and experimental study of microfluidic devices in step-index optical fibers,” Appl. Opt. 47(10), 1410-1416 (2008).

    19. K. Zhou, X. Chen, G. Simpson, D. Zhao, L. Zhang, and I. Bennion, “Temperature referenced high sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber bragg gratings,” in Optical Sensing, B. Culshaw, A. Mignani, and R. Riesenberg, eds., 5459, 409-414 (2004).

    20. R. Kashyap, Fiber Bragg Grating (Academic Press, 1999).

    21. S. Yuan and N. A. Riza, “General formula for coupling-loss characterization of single-mode fiber collimators by use of gradient-index rod lenses,” Appl. Opt. 38(15), 3214-3222 (1999).

  • Metrics
    No metrics available
Share - Bookmark