Evolutionary and mechanistic insights from the reconstruction of (+)-humulene synthases from a modern (+)-Germacrene A Synthase

Article English OPEN
Gonzalez Gonzalez, Veronica ; Touchet, Sabrina ; Grundy, Daniel J. ; Faraldos, Juan A. ; Allemann, Rudolf Konrad (2014)

Germacrene A synthase (GAS) from Solidago canadensis catalyzes the conversion of farnesyl diphosphate (FDP) to the plant sesquiterpene (+)-germacrene A. After diphosphate expulsion, farnesyl cation reacts with the distal 10,11-double bond to afford germacrene A (>96%) and <2% α-humulene, which arises from 1,11-cyclization of FDP. The origin of the 1,11-activity of GAS was investigated by amino acid sequence alignments of 1,10- and 1,11-synthases and comparisons of X-ray crystal structures with the homology model of GAS; a triad [Thr 401-Gly 402-Gly 403] that might be responsible for the predominant 1,10-cyclization activity of GAS was identified. Replacement of Gly 402 with residues of increasing size led to a progressive increase of 1,11-cyclization. The catalytic robustness of these 1,10- /1,11-GAS variants point to Gly 402 as a functional switch of evolutionary significance and suggests that enzymes with strict functionalities have evolved from less specific ancestors through a small number of substitutions. Similar results were obtained with germacrene D synthase (GDS) upon replacement of the homologous active-site residue Gly 404: GDS-G404V generated approximately 20% bicyclogermacrene, a hydrocarbon with a cyclopropane ring that underlines the dual 1,10-/1,11-cyclization activity of this mutant. This suggests that the reaction pathways to germacrenes and humulenes might be connected through a bridged 1,10,11-carbocation intermediate or transition state that resembles bicyclogermacrene. Mechanistic studies using [1-3H1]-10-fluorofarnesyl diphosphate and deuterium-labeling experiments with [12,13-2H6]-FDP support a germacrene–humulene rearrangement linking 1,10- and 1,11-pathways. These results support the bioinformatics proposal that modern 1,10-synthases could have evolved from promiscuous 1,11-sesquiterpene synthases.
  • References (84)
    84 references, page 1 of 9

    (1) (a) Cane, D. E. Acc. Chem. Res. 1985, 18, 220−226. (b) Cane, D.

    E. Chem. Rev. 1990, 90, 1089−1103. (c) Christianson, D. W. Chem.

    Rev. 2006, 106, 3412−3442. (d) Chappell, J.; Coates, R. M. In Comprehensive Natural Products II; Mande, L., Liu, H.-W., Eds.; Elsevier: Amsterdam, 2010; Vol. 1, Chapter 16, pp 624−635.

    (e) Miller, D. J.; Allemann, R. K. Nat. Prod. Rep. 2012, 29, 60−71.

    (f) Sallaud, C.; Rontein, D.; Onillon, S.; Jabes, F.; Duffe, P.; Giacalone, C.; Thoraval, S.; Escoffier, C.; Herbette, G.; Leonhardt, N.; Causse, M.; Tissier, A. Plant Cell 2009, 21, 301−317.

    (2) (a) Croteau, R. Chem. Rev. 1987, 87, 929−954. (b) Aaron, J. A.; Christianson, D. W. Pure Appl. Chem. 2010, 82, 1585−1597. (c) Gao, Y.; Honzatko, R. B.; Peters, R. J. Nat. Prod. Rep. 2012, 29, 1153−1175.

    (d) Oldfield, E.; Lin, F.-Y. Angew. Chem., Int. Ed. 2012, 51, 1124− 1137.

    (3) Faraldos, J. A.; Gonzalez, V.; Li, A.; Yu, F.; Koksal, M.; Christianson, D. W.; Allemann, R. K. J. Am. Chem. Soc. 2012, 134, 20844−20848.

    (4) (a) Christianson, D. W. Curr. Opin. Chem. Biol. 2008, 12, 141− 150. (b) Vedula, L. S.; Rynkiewicz, M. J.; Pyun, H.-J.; Coates, R. M.; Cane, D. E.; Christianson, D. W. Biochemistry 2005, 44, 6153−6163.

    (c) Whittington, D. A.; Wise, M. L.; Urbansky, M.; Coates, R. M.; Croteau, R. B.; Christianson, D. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 15375−15380. (d) Lesburg, C. A.; Caruthers, J. M.; Paschall, C.

  • Bioentities (1)
    3m01 Protein Data Bank
  • Metrics
    No metrics available
Share - Bookmark