Share  Bookmark

 Download from


35E. Ott and J. C. Sommerer, “Blowout bifurcations: The occurrence of riddled basins and onoff intermittency,” Phys. Lett. A 188, 3947 (1994).
36L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, “Symmetries, cluster synchronization, and isolated desynchronization in complex networks,” Nat. Commun. 5, 4079 (2013).
37C. A. Pinto and M. Golubitsky, “Central pattern generators for bipedal locomotion,” J. Math. Biol. 53, 474489 (2006).
38A. Y. Pogromsky, “A partial synchronization theorem,” Chaos 18, 037107 (2008).
39A. Y. Pogromsky, G. Santoboni, and H. Nijmeijer, “Partial synchronization: From symmetry towards stability,” Physica D 172, 6587 (2002).
40I. Stewart, “The lattice of balanced equivalence relations of a coupled cell network,” Math. Proc. Cambridge Philos. Soc. 143, 165183 (2007).
41I. Stewart and M. Golubitsky, “Synchronybreaking bifurcation at a simple real eigenvalue for regular networks 1: onedimensional cells,” SIAM J. Appl. Dyn. Syst. 10, 14041442 (2011).
42I. Stewart, M. Golubitsky, and M. Pivato, “Symmetry groupoids and patterns of synchrony in coupled cell networks,” SIAM J. Appl. Dyn. Syst. 2, 609646 (2003).
43I. Stewart and M. Parker, “Periodic dynamics of coupled cell networks II: cyclic symmetry,” Dyn. Syst. 23, 1741 (2008).
44L.S. Young, “What are SRB measures, and which dynamical systems have them?,” J. Stat. Phys. 108, 733 (2002).
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Warwick Research Archives Portal Repository  IRUSUK  0  11 