The stable roommates problem with ties
 Publisher: Elsevier

Related identifiers: doi: 10.1006/jagm.2002.1219 
Subject: QA75

References
(16)
16 references, page 1 of 2
 1
 2
[1] T. Feder, N. Megiddo, and S. Plotkin. A sublinear parallel algorithm for stable matching. In Proceedings of SODA '94: the 5th ACMSIAM Symposium on Discrete Algorithms, pages 632{637. ACMSIAM, 1994.
[2] D. Gale and L.S. Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 69:9{15, 1962.
[3] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco, CA., 1979.
[4] D. Gus¯eld. The structure of the stable roommate problem { e±cient representation and enumeration of all stable assignments. SIAM Journal on Computing, 17(4):742{ 769, 1988.
[5] D. Gus¯eld and R.W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989.
[6] J.D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on Discrete Mathematics, 6:375{387, 1993.
[7] R.W. Irving. An e±cient algorithm for the \stable roommates" problem. Journal of Algorithms, 6:577{595, 1985.
[8] R.W. Irving. On the stable roommates problem. Technical Report CSC/86/R5, University of Glasgow, Department of Computing Science, 1986.
[9] R.W. Irving. Stable marriage and indi®erence. Discrete Applied Mathematics, 48:261{ 272, 1994.
[10] R.W. Irving, D.F. Manlove, and S. Scott. The Hospitals/Residents problem with Ties. In Proceedings of SWAT 2000: the 7th Scandinavian Workshop on Algorithm Theory, volume 1851 of Lecture Notes in Computer Science, pages 259{271. SpringerVerlag, 2000.

Similar Research Results
(1)
Федерализм и принцип суверенитета (2006) 78% 
Metrics
No metrics available

 Download from


Cite this publication