Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber

Article English OPEN
Petrovich, M.N. ; Poletti, F. ; Wooler, J.P. ; Heidt, A.M. ; Baddela, N.K. ; Li, Zhihong ; Gray, D.R. ; Slavík, R. ; Parmigiani, F. ; Wheeler, N.V. ; Hayes, John ; Numkam Fokoua, Eric ; Grüner-Nielsen, L. ; Pálsdóttir, B. ; Phelan, R. ; Kelly, B. ; O'Carroll, J. ; Becker, M. ; MacSuibhne, N. ; Zhao, J. ; Garcia Gunning, F.C. ; Ellis, A.D. ; Petropoulos, P. ; Alam, S.U. ; Richardson, D.J. (2013)

The first demonstration of a hollow core photonic bandgap fiber (HC-PBGF) suitable for high-rate data transmission in the 2 µm waveband is presented. The fiber has a record low loss for this wavelength region (4.5 dB/km at 1980 nm) and a &gt;150 nm wide surface-mode-free transmission window at the center of the bandgap. Detailed analysis of the optical modes and their propagation along the fiber, carried out using a time-of-flight technique in conjunction with spatially and spectrally resolved (S2) imaging, provides clear evidence that the HC-PBGF can be operated as quasi-single mode even though it supports up to four mode groups. Through the use of a custom built Thulium doped fiber amplifier with gain bandwidth closely matched to the fiber's low loss window, error-free 8 Gbit/s transmission in an optically amplified data channel at 2008nm over 290m of 19 cell HC-PBGF is reported.<br/>
  • References (19)
    19 references, page 1 of 2

    6. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14(17), 7974-7985 (2006).

    7. N. K. Baddela, M. N. Petrovich, Y. Jung, J. R. Hayes, N. V. Wheeler, D. R. Gray, N. Wong, F. Parmigiani, E. Numkam, J. P. Wooler, F. Poletti, and D. J. Richardson, “First demonstration of a low loss 37-cell hollow core photonic bandgap fiber and its use for data transmission,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTu2K.3.

    8. F. Poletti, E. R. Numkam Fokoua, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, J. R. Hayes, and D. J. Richardson, “Hollow core photonic bandgap fibers for telecommunications: opportunities and potential issues,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OTh1H.3.

    9. R. Slavík, M. N. Petrovich, N. V. Wheeler, J. R. Hayes, N. K. Baddela, D. R. Gray, F. Poletti, and D. J. Richardson, “1.45 Tbit/s, low latency data transmission through a 19-cell hollow core photonic band gap fibre,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Mo.2.F.2.

    10. V. A. Sleiffer, Y. Jung, P. Leoni, M. Kuschnerov, N. V. Wheeler, N. K. Baddela, R. G. H. van Uden, C. M. Okonkwo, J. R. Hayes, J. Wooler, E. Numkam, R. Slavik, F. Poletti, M. N. Petrovich, V. Veljanovski, S. U. Alam, D. J. Richardson, and H. de Waardt, “30.7 Tb/s (96x320 Gb/s) DP-32QAM transmission over 19-cell photonic band gap fiber, ” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1I.5.

    11. Y. Jung, V. A. J. M. Sleiffer, N. K. Baddela, M. N. Petrovich, J. R. Hayes, N. V. Wheeler, D. R. Gray, E. R. Numkam Fokoua, J. Wooler, N. Wong, F. Parmigiani, S. Alam, J. Surof, M. Kuschnerov, V. Veljanovski, H. de Waardt, F. Poletti, and D. J. Richardson, “First demonstration of a broadband 37-cell hollow core photonic bandgap fiber and its application to high capacity mode division multiplexing,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper PDP5A.3.

    12. P. J. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. A. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236- 244 (2005).

    13. J. K. Lyngsø, B. J. Mangan, C. Jakobsen, and P. J. Roberts, “7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 microm,” Opt. Express 17(26), 23468-23473 (2009).

    14. R. A. Garnham, D. G. Cunningham, and W. A. Stallard, “34 Mbit/s optical fibre transmission system experiment at a wavelength of 2.4 μm,” Electron. Lett. 23(20), 1063-1064 (1987).

    15. N. Mac Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. P. Wooler, S. U. Alam, F. Poletti, M. N. Petrovich, A. Heidt, I. Giles, D. J. Giles, B. Pálsdóttir, L. Grüner-Nielsen, R. Phelan, J. O'Carroll, B. Kelly, D. Murphy, A. Ellis, D. J. Richardson, and F. C. Garcia Gunning, “Wavelength division multiplexing at 2μm,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.3.A.3.

  • Related Research Results (2)
  • Similar Research Results (4)
  • Bioentities (1)
    2ofs Protein Data Bank
  • Metrics
    No metrics available