Share  Bookmark

 Download from



[1] N. Afshordi, S. Aslanbeigi, and R. D. Sorkin, A distinguished vacuum state for a quantum field in a curved spacetime: formalism, features, and cosmology, Journal of High Energy Physics 2012 (2012), no. 8, 129.
[2] C. Bär and K. Fredenhagen, Quantum field theory on curved spacetimes. concepts and mathematical foundations, Lecture Notes in Physics 786 (2009).
[3] C. Bär, N. Ginoux, and F. Pfäffle, Wave equations on Lorentzian manifolds and quantization, European Mathematical Society, 2007.
[4] I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization, Physics Letters B 102 (1981), no. 1, 2731.
[5] C. Becker, A. Schenkel, and R. J. Szabo, Differential cohomology and locally covariant quantum field theory, (2014), [arXiv:mathph/arXiv:1406.1514].
[6] M. Benini, C. Dappiaggi, and T.P. Hack, Quantum field theory on curved backgrounds  a primer, International Journal of Modern Physics A 28 (2013), no. 17.
[7] M. Benini, C. Dappiaggi, T.P. Hack, and A. Schenkel, A C∗algebra for quantized principal U (1) connections on globally hyperbolic Lorentzian manifolds, (2013), [arXiv:mathph/1307.3052].
[9] M. Benini, C. Dappiaggi, and A. Schenkel, Quantized Abelian principal connections on Lorentzian manifolds, Commun. Math. Phys. 330 (2014), no. 1, 123152.
[10] A. N. Bernal and M. Sánchez, On smooth Cauchy hypersurfaces and Geroch's splitting theorem, Commun. Math. Phys. 243 (2003), no. 3, 461470.
[11] N. Bogoliubov and D. Shirkov, Introduction to the Theory of Quantized Fields, Introduction to the Theory of Quantized Fields, Interscience, New York, 1959.