Share  Bookmark

 Download from



[1] Accardi, L., Cecchini, C.: Conditional expectations in von Neumann algebras and a theorem of Takesaki. Journal of Functional Analysis 45(2), 245273 (1982)
[2] Alesker, S.: Integrals of smooth and analytic functions over Minkowski's sums of convex sets. In: K.M. Ball, V. Milman (eds.) Convex Geometric Analysis, vol. 34, pp. 115. MSRI Publications (1998)
[3] Amari, S.I.: DifferentialGeometrical Methods of Statistics, Lecture Notes in Statistics, vol. 25. Springer, Berlin, Germany (1985)
[4] Amari, S.I., Ohara, A.: Geometry of qexponential family of probability distributions. Entropy 13, 11701185 (2011)
[5] Asplund, E., Rockafellar, R.T.: Gradients of convex functions. Transactions of the American Mathematical Society 139, 443467 (1969)
[6] Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. Journal of Machine Learning Research 6, 17051749 (2005)
[8] Belavkin, R.V.: On evolution of an information dynamic system and its generating operator. Optimization Letters pp. 114 (2011). 10.1007/s115900110325z
[9] Belavkin, V.P.: New types of quantum entropies and additive information capacities. In: L. Accardi, W. Freudenberg, M. Ohya (eds.) Quantum BioInformatics IV, QPPQ: Quantum Probability and White Noise Analysis, pp. 6189. World Scientific (2011)
[10] Bobkov, S.G., Zegarlinski, B.: Entropy bounds and isoperimetry. Memoirs of the American Mathematical Society 176(829) (2005)
[11] Bourbaki, N.: Ele´ments de mathe´matiques. Inte´gration. Hermann (1963)