Share  Bookmark

 Download from


[1] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymptotic Anal., 4 (1991), pp. 271283.
[2] J. M. Berg, A. Yezzi, and A. R. Tannenbaum, Phase transitions, curve evolution and the control of semiconductor manufacturing processes, in Proceedings of the IEEE Conference on Decision and Control, Kobe, Japan, 1996, pp. 33763381.
[3] J. M. Berg and N. Zhou, Shapebased optimal estimation and design of curve evolution processes with application to plasma etching, IEEE Trans. Automat. Control, 46 (2001), pp. 18621873.
[4] C. Castro, F. Palacios, and E. Zuazua, An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks, Math. Models Methods Appl. Sci., 18 (2008), pp. 369416.
[5] M. G. Crandall and P. L. Lions, Viscosity solutions of HamiltonJacobi equations, Trans. Amer. Math. Soc., 277 (1983), pp. 142.
[6] M. G. Crandall, L. C. Evans, and P. L. Lions, Some properties of viscosity solutions of HamiltonJacobi equations, Trans. Amer. Math. Soc., 282 (1984), pp. 487502.
[7] K. Deckelnick and C. M. Elliott, Uniqueness and error analysis for HamiltonJacobi equations with discontinuities, Interfaces Free Bound., 6 (2004), pp. 329349.
[8] K. Deckelnick and C. M. Elliott, Propagation of graphs in twodimensional inhomogeneous media, Appl. Numer. Math., 56 (2006), pp. 11631178.
[9] H. Ishii, HamiltonJacobi equations with discontinuous Hamiltonians on arbitrary open sets, Bull. Fac. Sci. Engrg. Chuo. Univ., 28 (1985), pp. 3377.
[10] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monogr. 24, AMS, Providence, RI, 1968.