Share  Bookmark

 Download from


 Funded by

[1] S. Andrews, Inclose, a fast algorithm for computing formal concepts, in: S. Rudolph, F. Dau, S.O. Kuznetsov, (Eds.), ICCS 2009, CEUR WS, vol. 483, 2009. <http://sunsite.informatik.rwthaachen.de/Publications/CEURWS/Vol483/>.
[2] S. Andrews, Inclose2, a high performance formal concept miner, in: S. Andrews, S. Polovina, R. Hill, B. Akhgar (Eds.), Conceptual Structures for Discovering Knowledge  Proceedings of the 19th International Conference on Conceptual Structures (ICCS), Springer, 2011, pp. 5062.
[3] S. Andrews, Appendix to a Best of Breed Approach to Designing a Fast Algorithm for Computing Fixpoints of Galois Connections, 2013. <https:// dl.dropboxusercontent.com/u/3318140/bob_appendix.pdf>.
[4] S. Andrews, InClose Program, 2013. <http://sourceforge.net/projects/inclose/>.
[5] S. Andrews, C. Orphanides, Analysis of large data sets using formal concept lattices, in: [21], 2010, pp. 104115.
[6] S. Andrews, C. Orphanides, Fcabedrock, a formal context creator, in: M. Croitoru, S. Ferre, D. Lukose (Eds.), ICCS 2010, LNCS, vol. 6208/2010, Springer, 2010.
[7] D. Borchman, A generalized nextclosure algorithm  enumerating semilattice elements from a generating set, in: L. Szathmary, U. Priss, (Eds.), Proceedings of Concept Lattices and thie Applications (CLA) 2012, Universidad de Malaga, 2012, pp. 920.
[8] J.P. Bordat, Calcul pratique du treillis de Galois dune correspondance, Math. Sci. Hum. 96 (1986) 3147.
[9] C. Carpineto, G. Romano, Concept Data Analysis: Theory and Applications, J. Wiley, 2004.
[10] M. Chein, Algorithme de recherche des sousmatrices premires dune matrice, Bull. Math. Soc. Sci. Math. R.S. Roumanie 13 (1969) 2125.
The information is available from the following content providers:
From  Number Of Views  Number Of Downloads 

Sheffield Hallam University Research Archive  IRUSUK  0  163 