Discontinuous Galerkin methods for Friedrichs systems with irregular solutions

Subject: QA297

References
(30)
Cockburn, B.: 2003, Discontinuous Galerkin methods, ZAMM Z. Angew. Math. Mech. 83(11), 731754.
Cockburn, B., Karniadakis, G. E. and Shu, C.W.: 2000, The development of discontinuous Galerkin methods, Discontinuous Galerkin methods (Newport, RI, 1999), Vol. 11 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 350.
Dautray, R. and Lions, J.L.: 198893, Mathematical analysis and numerical methods for science and technology, SpringerVerlag, Berlin.
Falk, R. S. and Richter, G. R.: 2000, Explicit finite element methods for linear hyperbolic systems, Discontinuous Galerkin methods (Newport, RI, 1999), Vol. 11 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, pp. 209219.
Federer, H.: 1969, Geometric measure theory, Vol. 153 of Die Grundlehren der mathematischen Wissenschaften, SpringerVerlag, Berlin.
Fichera, G.: 1956, Sulle equazioni differenziali lineari ellitticoparaboliche del secondo ordine, Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. (8) 5, 130.
Fraenkel, L. E.: 1979, On regularity of the boundary in the theory of Sobolev spaces, Proc. London Math. Soc. (3) 39(3), 385427.
Friedrichs, K. O.: 1954, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math. 7, 345392.
Friedrichs, K. O.: 1958, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11, 333418.
Houston, P., Jensen, M. and Su¨li, E.: 2002a, hpdiscontinuous Galerkin finite element methods with leastsquares stabilization, J. Sci. Comput. 17(14), 325.

Metrics
0views in OpenAIRE0views in local repository104downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Sussex Research Online  IRUSUK 0 104

 Download from


Cite this publication