## A note on maximal length elements in conjugacy classes of finite coxeter groups

Article English OPEN
Hart, Sarah ; Rowley, P.J. (2010)
• Publisher: Birkbeck College, University of London
• Subject: ems
arxiv: Mathematics::Representation Theory | Mathematics::Group Theory | Mathematics::Quantum Algebra

The maximal lengths of elements in each of the conjugacy classes of Coxeter groups of types \$B_n\$, \$D_n\$ and \$E_6\$ are determined. Additionally, representative elements are given that attain these maximal lengths.
• References (12)
12 references, page 1 of 2

[1] Cannon, J.J. and Playoust, C. An Introduction to Algebraic Programming with Magma [draft], Springer-Verlag (1997).

[2] Carter, R.W. Conjugacy Classes in the Weyl Group, Compositio. Math. 25, Facs. 1 (1972), 1{59.

[3] Carter, R. W. Finite groups of Lie type. Conjugacy classes and complex characters Wiley Classics Library. John Wiley and Sons, Ltd., Chichester, 1993. 544 pp.

[4] Cauchy, A. Exercises d'analyse et de physique mathematique, 1844.

[5] Geck, M., Kim, S. and Pfei®er, G. Minimal length elements in twisted conjugacy classes of ¯nite Coxeter groups, J. Algebra 229 (2000), no. 2, 570{600.

[6] Geck, M. and Pfei®er, G. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, LMS Monographs, New Series 21, (2000).

[7] Humphreys, J.E. Re°ection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29 (1990).

[8] Kim, S. Mots de longueur maximale dans une classe de conjugaison d'un groupe symtrique, vu comme groupe de Coxeter (French) [Words of maximal length in a conjugacy class of a symmetric group, viewed as a Coxeter group], C. R. Acad. Sci. Paris Sr. I Math. 327 (1998), no. 7, 617{622.

[9] Perkins, S. B. and Rowley, P. J. Minimal and maximal length involutions in ¯nite Coxeter groups, Comm. Algebra 30 (2002), no. 3, 1273{1292.

[10] Perkins, S. B. and Rowley, P. J. Lengths of involutions in Coxeter groups, J. Lie Theory 14 (2004), no. 1, 69{71.

• Metrics
0
views in OpenAIRE
0
views in local repository
10