Share  Bookmark

 Download from


[1] Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, Frontiers in Appl. Math. 30, SIAM, Philadelphia, 2005.
[2] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Commun. Pur. Appl. Math., 12 (1959), pp. 623727.
[3] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Commun. Pur. Appl. Math., 17 (1964), pp. 3592.
[4] A. Ammar, B. Mokdad, F. Chinesta, and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, J. NonNewton. Fluid Mech., 139 (2006), pp. 153176, https:// doi.org/10.1016/j.jnnfm.2006.07.007.
[5] A. K. Aziz, R. B. Kellogg, and A. B. Stephens, Least squares methods for elliptic systems, Math. Comput., 44 (1985), pp. 5370.
[6] I. Babuˇska, Error bounds for finite element method, Numer. Math., 16 (1971), pp. 322333.
[7] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc. Natl. Acad. Sci. USA, 99 (2002), pp. 1024610251, https://doi.org/10.1073/pnas. 112329799.
[8] M. BillaudFriess, A. Nouy, and O. Zahm, A tensor approximation method based on ideal minimal residual formulations for the solution of highdimensional problems, ESAIMMath. Model. Numer., 48 (2014), pp. 17771806, https://doi.org/10.1051/m2an/2014019.
[9] P. B. Bochev and M. D. Gunzburger, Analysis of leastsquares finite element methods for the Stokes equations, Math. Comput., 63 (1994), pp. 479506.
[10] P. B. Bochev and M. D. Gunzburger, LeastSquares Finite Element Methods, SpringerVerlag, New York, 2009.