The blob algebra in positive characteristic

Article English OPEN
Cox, Anton ; Graham, John ; Martin, Paul (2003)
  • Publisher: Elsevier BV
  • Journal: Journal of Algebra, volume 266, issue 2, pages 584-635 (issn: 0021-8693)
  • Related identifiers: doi: 10.1016/s0021-8693(03)00260-6
  • Subject: QA | Algebra and Number Theory
  • References (13)
    13 references, page 1 of 2

    [4] P. P. Martin, H. Saleur, On an algebraic approach to higher dimensional statistical mechanics, Comm. Math. Phys. 158 (1993) 155-190.

    [5] C. K. Fan, R. M. Green, On the affine Temperley Lieb algebras, J. London Math. Soc. (2) 60 (1999) 366-380.

    [6] V. F. R. Jones, A quotient of the affine Hecke algebra in the Brauer algebra, L'Enseignement Math´ematique 40 (1994) 313-344.

    [8] J. J. Graham, G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, L'Enseignement Math´ematique 44 (1998) 173-218.

    [10] I. N. Bernstein, A. V. Zelevinsky, Induced representations of reductive algebraic groups, Ann. Sci. E´cole Norm. Sup. (4) 10 (1977) 441-472.

    [20] K. Erdmann, Symmetric groups and quasi-hereditary algebras, in: V. Dlab, L. L. Scott (Eds.), Finite dimensional algebras and related topics, Kluwer, 1994, pp. 123-161.

    [21] R. Dipper, G. D. James, Representations of Hecke algebras of general linear groups, Proc. London Math. Soc. (3) 52 (1986) 20-52.

    [22] J. Du, B. Parshall, L. Scott, Quantum Weyl reciprocity and tilting modules, Communications in Mathematical Physics 195 (1998) 321-352.

    [23] P. P. Martin, On Schur-Weyl duality, An Hecke algebras and quantum sl(N ) on ⊗n+1CN , Inter. J. Modern Physics 7 (1B) (1992) 645-673.

    [24] G. D. James, On the decomposition matrices of the symmetric groups, I, J. Algebra 43 (1976) 42-44.

  • Metrics
    No metrics available
Share - Bookmark