Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm

Article English OPEN
Warburton, R.E. ; Intermite, G. ; Myronov, M. ; Allred, P. ; Leadley, D.R. ; Gallacher, Kevin ; Paul, D.J. ; Pilgrim, N.J. ; Lever, L.J.M. ; Ikonic, Z. ; Kelsall, R.W. ; Huante-Ceron, E. ; Knights, A.P. ; Buller, G.S. (2013)

The design, modeling, fabrication, and characterization of single-photon avalanche diode detectors with an epitaxial Ge absorption region grown directly on Si are presented. At 100 K, a single-photon detection efficiency of 4% at 1310 nm wavelength was measured with a dark count rate of ~ 6 megacounts/s, resulting in the lowest reported noise-equivalent power for a Ge-on-Si single-photon avalanche diode detector (1×10-14 WHz-1/2). The first report of 1550 nm wavelength detection efficiency measurements with such a device is presented. A jitter of 300 ps was measured, and preliminary tests on after-pulsing showed only a small increase (a factor of 2) in the normalized dark count rate when the gating frequency was increased from 1 kHz to 1 MHz. These initial results suggest that optimized devices integrated on Si substrates could potentially provide performance comparable to or better than that of many commercially available discrete technologies.
  • References (35)
    35 references, page 1 of 4

    [1] H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photon., vol. 1, no. 6, pp. 343-348, Jun. 2007.

    [2] R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett., vol. 32, no. 15, pp. 2266-2268, Aug. 2007.

    [3] D. Sakaizawa, C. Nagasawa, T. Nagai, M. Abo, Y. Shibata, M. Nakazato, and T. Sakai, “Development of a 1.6 μm differential absorption lidar with a quasi-phase-matching optical parametric oscillator and photoncounting detector for the vertical CO2 profile,” Appl. Opt., vol. 48, no. 4, pp. 748-757, Feb. 2009.

    [4] J. L. O'Brien, A. Furusawa, and J. Vucˇkovicˇ, “Photonic quantum technologies,” Nature Photon., vol. 3, no. 12, pp. 687-695, 2009.

    [5] A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 μm: Performance of commercially available InGaAs/lnP detectors,” Appl. Opt., vol. 35, no. 16, pp. 2986-2996, Jun. 1996.

    [6] S. Pellegrini, R. E. Warburton, L. J. J. Tan, J. S. Ng, A. B. Krysa, K. Groom, J. P. R. David, S. Cova, M. J. Robertson, and G. S. Buller, “Design and performance of an InGaAs-InP single-photon avalanche diode detector,” IEEE J. Quantum Electron., vol. 42, no. 4, pp. 397-403, Apr. 2006.

    [7] Z. Yan, D. R. Hamel, A. K. Heinrichs, J. I. Xudong, and T. Jennewein, “An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode,” Rev. Sci. Instrum., vol. 83, no. 7, pp. 073105-1-073105-15, Jul. 2012.

    [8] Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett., vol. 91, no. 4, pp. 041114-1-041114-3, Jul. 2007.

    [9] N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett., vol. 22, no. 8, pp. 529-531, Apr. 15, 2010.

    [10] R. E. Warburton, M. Itzler, and G. S. Buller, “Free-running, room temperature operation of an InGaAs/InP single-photon avalanche diode,” Appl. Phys. Lett., vol. 94, no. 7, pp. 071116-1-071116-3, Feb. 2009.

  • Metrics
    No metrics available