Investigation of engine performance and exhaust gas emissions by using bio-diesel in compression ignition engine and optimisation of bio-diesel production from feedstock by using response surface methodology

Doctoral thesis English OPEN
Abuhabaya, Abdullah
  • Subject: TA
    mesheuropmc: complex mixtures

Bio-diesel, derived from the transesterification of vegetable oils or animal fats with simple alcohols, has attracted more and more attention recently. As a cleaner burning diesel alternative, bio-diesel claims to have many attractive features including: biodegradability,\ud nontoxicity, renewability and low emission profiles. Free fatty acid (FFA) esterification and\ud triglyceride (TG) transesterification with low alcohols molar ratio are the central reactions for\ud the bio-diesel production. This study presents an experimental investigation into the effects of\ud running biodiesel fuel and its blends on conventional diesel engines. Bio-fuels provide a way to produce fuels without redesigning any of the engine technology present today, yet allowing\ud for green house emissions to decrease.\ud \ud Bio-diesel is one of these types of emerging bio-fuels, which has an immediate alternative fuel, while providing a decrease in green house gas emissions, as well as a solution to recycling used Waste Vegetable Oils which are otherwise disposed. This study shows how by blending bio-diesel with petroleum diesel at intervals of B5, B10, B15, and B20 decrease green house gas emissions significantly while maintaining similar performance output and efficiency with respect to 100% petroleum diesel.\ud \ud The focus of this research is to optimize the biodiesel production from crude sunflower\ud oil. The effect of variables including methanol/oil molar ratio, NaOH catalyst concentration, reaction time, reaction temperature, and rate of mixing on the bio-diesel yield was examined and optimized by response surface methodology (RSM). Besides, a second-order model was deduced to predict the biodiesel yield. Confirmation experiment was further conducted, validating the efficacy of the model.\ud \ud Transesterification of sunflower oil was carried out using low molecular weight alcohols and sodium hydroxide. For sunflower oil, a central composite design with eight factorial, six center and six axial points was used to study the effect of catalyst concentration, molar ratio of methanol to sunflower oil and reaction temperature on percentage yield of the biodiesel. Catalyst concentration and molar ratio of methanol to sunflower oil were the most influential variables affecting percentage conversion and percentage initial absorbance.\ud Maximum percentage yield of 95 % is predicted at a catalyst concentration of 1.1 % (wt/wt) and methanol to sunflower oil molar ratio of 6.8:1 at reaction time of 66 min and temperature of 35°C. In general, the sunflower oil biodiesel exhibited friendly environmental benefits and acceptable stability, demonstrating its feasibility as an alternative fuel.
  • References (92)
    92 references, page 1 of 10

    1. Abdullah Abuhabaya and John Fieldhouse “ Variation of Engine Performance and Emissions using Ethanlo Blends”. The 14th International Conference on Machine Design and Production. Volume II, ISBN 978-975-429-282-4, pp 687-700. June 29 - July 02 2010, Güzelyurt, Turkish Republic of Northern Cyprus. Publisher UMTIK.

    2. Abdullah Abuhabaya, John Fieldhouse, David Rob Brown “ Variation of Engine Performance and Emissions using Biodiesel Fuels”. The 2nd International Conference on Nuclear & Renewable Energy Resources ISBN 978-605-88549-0-1, pp 580-585. July 4 - July 7 2010, Gazi University Golbasi, Convention Centre, Ankara, Turkey. Publisher Vizyon Publishing House, Ankara, Turkey.

    3. A. Abuhabaya and J. D. Fieldhouse “VARIATION OF ENGINE PERFORMANCE AND EMISSIONS USING ETHANOL BLENDS” The 36th International MATADOR Conference , ISBN 978-1-84996-431-9, pp 413-416. July 14 - July 16 2010, Manchester University , Springer, London Dordrecht Heidelberg, New York. British Library Cataloguing in Publication Data. A catalogue record for this book is available from the British Library.

    4. A. Abuhabaya, J. D. Fieldhouse, D. R. Brown “Evaluation of Properties and use of waste vegetable oil (WVO), pure vegetable oils and standard diesel as used in a compression ignition engine”. Computing and Engineering Annual Researchers' Conference 2010, ISBN 978-1-86218-093-2, pp 71-76. CEARC'10, December 2010, University of Huddersfield, Huddersfield, UK.

    5. Abdullah Abuhabaya, John Fieldhouse, and Rob Brown “The Effects of Using Biodiesel as Fuel on Compression Ignition (CI) Engine and Its Production from Vegetable Oils”. 2011 International Conference on Environmental, Biomedical and Biotechnology (ICEBB 2011). ISBN 978-981-08-9168-8, IPCBEE vol. 16 (2011), © (2011) IACSIT Press, Singapoore, pp 41-46. August 19-21, 2011, Shanghai, China.

    6. Abdullah Abuhabaya, Jafar Ali, John Fieldhouse, Rob Brown and Eko Andrijanto “The Optimisation of Bio-diesel Production from Sunflower Oil using RSM and its Effect on Engine Performance and Emissions”. Proceedings of the 17th International Conference on Automation & Computing, University of Huddersfield, Huddersfield, UK, 10 September 2011. ISBN 978-1-4673-0000-1, pp 310-314.

    7. Ali, Jafar, Abuhabaya, Abdullah, Fieldhouse, John “Infrared thermography study of thermal plume”. Proceedings of the 17th International Conference on Automation & Computing, University of Huddersfield, Huddersfield, UK, 10 September 2011. ISBN 978-1-4673-0000-1, pp 234-239.

    [74] Srivastava, A., Prasad, R. (2000) Triglycerides-based diesel fuels Renewable & Sustainable Energy Reviews, 4: 111-113.

    [75] Ma, F.R. and Hanna, M.A. (1999) Bio-diesel production: a review Bioresour. Technol., 70: (1999) 1-15.

    [76] Schwab, A.W., Bagby, M.O., Freedman, B. (1987) Preparation and Properties of Diesel Fuels from Vegetable-Oils Fuel, 66: 1372-1378.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    University of Huddersfield Repository - IRUS-UK 0 462
Share - Bookmark