Resonant tunnelling between the chiral Landau states of twisted graphene lattices

Article, Preprint English OPEN
Greenaway, M.T. ; Vdovin, Evgeny E. ; Mishchenko, A. ; Makarovsky, Oleg ; Patanè, Amalia ; Wallbank, J.R. ; Cao, Y. ; Kretinin, A.V. ; Zhu, M.J. ; Morozov, S.V. ; Fal’ko, V.I. ; Novoselov, K.S. ; Geim, A.K. ; Fromhold, T.M. ; Eaves, Laurence (2015)
  • Publisher: Nature Publishing Group
  • Related identifiers: doi: 10.1038/nphys3507
  • Subject: Condensed Matter - Mesoscale and Nanoscale Physics
    arxiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect

A class of multilayered functional materials has recently emerged in which the component atomic layers are held together by weak van der Waals forces that preserve the structural integrity and physical properties of each layer. An exemplar of such a structure is a transistor device in which relativistic Dirac Fermions can resonantly tunnel through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. An applied magnetic field quantises graphene's gapless conduction and valence band states into discrete Landau levels, allowing us to resolve individual inter-Landau level transitions and thereby demonstrate that the energy, momentum and chiral properties of the electrons are conserved in the tunnelling process. We also demonstrate that the change in the semiclassical cyclotron trajectories, following an inter-layer tunnelling event, is analogous to the case of intra-layer Klein tunnelling.
  • References (33)
    33 references, page 1 of 4

    [1] Liu, Y., Bian, G., Miller, T. and Chiang, T.-C. Visualizing Electronic Chirality and Berry Phases in Graphene Systems Using Photoemission with Circularly Polarized Light. Phys. Rev. Lett. 107, 166803 (2011).

    [2] Young, A. F. and Kim, P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nat. Phys. 5, 222 - 226 (2009)

    [3] Katsnelson, M. I., Novoselov, K. S. and Geim A. K. Chiral tunnelling and the Klein paradox in graphene. Nat. Phys. 2, 620-625 (2006).

    [4] Geim, A. K. and Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419-425, (2013).

    [5] Britnell, L. et al. Field-e ect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950, (2012).

    [6] Britnell, L. et al. Resonant tunnelling and negative di erential conductance in graphene transistors. Nat. Commun. 4, 1794, (2013).

    [7] Fallahazad, B. et al. Gate-Tunable Resonant Tunneling in Double Bilayer Graphene Heterostructures. Nano Lett. 15, 1 (2015).

    [8] Mishchenko, A. et al. Twist-controlled resonant tunnelling in graphene / boron nitride / graphene heterostructures. Nature Nanotech. 9, 808813 (2014).

    [9] Feenstra, R. M, Jena, D. and Gu, G. Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    [10] Zhao, P., Feenstra, R. M., Gu, G. and Jena, D. SymFET: A Proposed Symmetric Graphene Tunneling Field-E ect Transistor. IEEE Trans. Electron Devices 60, 951957 (2013).

  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark