G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent

Article English OPEN
Jamshad, Mohammed ; Charlton, Jack ; Lin, Yu-Pin ; Routledge, Sarah J. ; Bawa, Zharain ; Knowles, Timothy J. ; Overduin, Michael ; Dekker, Niek ; Dafforn, Tim R. ; Bill, Roslyn M. ; Poyner, David R. ; Wheatley, Mark (2015)
  • Publisher: Portland Press Ltd.
  • Journal: Bioscience Reports, volume 35, issue 2 (issn: 0144-8463, eissn: 1573-4935)
  • Related identifiers: doi: 10.1042/BSR20140171, pmc: PMC4400634
  • Subject: HEK, human embryonic kidney | GPCR, G-protein coupled receptor | FTICR, Fourier-transform ion cyclotron resonance | NECA, 5'-(N-ethylcarboxamido)adenosine | PTH1R, parathyroid hormone 1 receptor | SMALP, SMA lipid particle | AUC, analytical ultracentrifugation | Original Paper | MSP, membrane scaffold protein | structure | A2AR–SMALP, SMALP-solubilized A2AR | cv, column volumes | G-protein coupled receptor (GPCR) | DDM, n-dodecyl-β-D-maltopyranoside | adenosine receptor | protein thermostability | A2AR, adenosine A2A receptor | SMA, styrene maleic acid | XAC, xanthine analogue congener | detergent-free | NTA, nitrilotriacetate | A2AR–DDM, DDM-solubilized A2AR
    mesheuropmc: parasitic diseases

G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the present study, we report the first solubilization and purification of a functional GPCR [human adenosine A<inf>2A</inf> receptor (A<inf>2A</inf>R)], in the total absence of detergent at any stage, by exploiting spontaneous encapsulation by styrene maleic acid (SMA) co-polymer direct from the membrane into a nanoscale SMA lipid particle (SMALP). Furthermore, the A<inf>2A</inf>R-SMALP, generated from yeast (Pichia pastoris) or mammalian cells, exhibited increased thermostability (∼5°C) compared with detergent [DDM (n-dodecyl-β-D-maltopyranoside)]-solubilized A<inf>2A</inf>R controls. The A<inf>2A</inf>R-SMALP was also stable when stored for prolonged periods at 4°C and was resistant to multiple freeze-thaw cycles, in marked contrast with the detergent-solubilized receptor. These properties establish the potential for using GPCR-SMALP in receptor-based drug discovery assays. Moreover, in contrast with nanodiscs stabilized by scaffold proteins, the non-proteinaceous nature of the SMA polymer allowed unobscured biophysical characterization of the embedded receptor. Consequently, CD spectroscopy was used to relate changes in secondary structure to loss of ligand binding ([<sup>3</sup>H]ZM241385) capability. SMALP-solubilization of GPCRs, retaining the annular lipid environment, will enable a wide range of therapeutic targets to be prepared in native-like state to aid drug discovery and understanding of GPCR molecular mechanisms.
  • References (44)
    44 references, page 1 of 5

    1 Wheatley, M., Wootten, D., Conner, M.T., Simms, J., Kendrick, R., Logan, R.T., Poyner, D.R. and Barwell, J. (2012) Lifting the lid on G-protein-coupled receptors: the role of extracellular loops. Brit. J. Pharmacol. 165, 1688-1703 CrossRef

    2 Lagerstro¨m, M.C. and Schio¨th, H.B. (2008) Structural diversity of G-protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7, 339-357 CrossRef PubMed

    3 Popot, J.-L. (2010) Amphipols, nanodiscs and fluorinated surfactants: three nonconventional approaches to studying membrane proteins in aqueous solutions. Annu. Rev. Biochem. 79, 737-775 CrossRef PubMed

    4 Chae, P.S., Rasmussen, S.G., Rana, R.R., Gotfryd, K., Chandra, R., Goren, M.A., Kruse, A.C., Nurva, S., Loland, C.J., Pierre, Y. et al. (2010) Maltose-neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat. Methods 7, 1003-1008 CrossRef PubMed

    5 Bane`res, J.L., Popot, J.L. and Mouillac, B. (2011) New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol. 29, 314-322 CrossRef PubMed

    6 Nehme´, R., Joubert, O., Bidet, M., Lacombe, B., Polidori, A., Pucci, B. and Mus-Veteau, I. (2010) Stability study of the human G-protein-coupled receptor, smoothened. Biochim. Biophys. Acta 1798, 1100-1110 CrossRef PubMed

    7 Tao, H., Lee, S.C., Moeller, A., Roy, R.S., Siu, F.Y., Zimmermann, J., Stevens, R.C., Potter, C.S., Carragher, B. and Zhang, Q. (2013) Engineered nanostructured β-sheet peptides protect membrane proteins. Nat. Methods 10, 759-761 CrossRef PubMed

    8 Bayburt, T.H., Grinkova, Y.V. and Sligar, S.G. (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett. 2, 853-856 CrossRef

    9 Leitz, A.J., Bayburt, T.H., Barnakov, A.N., Springer, B.A. and Sligar, S.G. (2006) Functional reconstitution of β2-adrenergic receptors utilizing self-assembling nanodisc technology. Biotechniques 40, 601-610 CrossRef PubMed

    10 Whorton, M.R., Bokoch, M.P., Rasmussen, S.G., Huang, B., Zare, R.N., Kobilka, B. and Sunahara, R.K. (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl. Acad. Sci. U.S.A. 104, 7682-7687 CrossRef PubMed

  • Metrics
    No metrics available