An evolutionarily-unique heterodimeric voltage-gated cation channel found in aphids

Article English OPEN
Amey, Joanna S. ; O'Reilly, Andrias O. ; Burton, Mark J. ; Puinean, Alin M. ; Mellor, Ian R. ; Duce, Ian R. ; Field, Linda M. ; Wallace, B.A. ; Williamson, Martin S. ; Davies, T.G. Emyr (2015)
  • Publisher: Wiley
  • Journal: Febs Letters, volume 589, issue 5, pages 598-607 (issn: 0014-5793, eissn: 1873-3468)
  • Related identifiers: doi: 10.1016/j.febslet.2015.01.020/abstract, doi: 10.1016/j.febslet.2015.01.020, pmc: PMC4332693
  • Subject: RACE, Rapid Amplification of cDNA ends | DDT, dichlorodiphenyltrichloroethane | kb, kilobase(s) or 1000 base pairs | NCBI, The National Center for Biotechnology Information | Evolution | BLAST, basic local alignment search tool | PCR, polymerase chain reaction | Voltage-gated sodium channel | TM, trans membrane | Article | MYA, million years ago | bcs | TTX, tetrodotoxin | bp, base pair | Nav, voltage-gated sodium channel | cDNA, DNA complementary to RNA | Tetrodotoxin | RNA, ribonucleic acid | Aphid

We describe the identification in aphids of a unique heterodimeric voltage-gated sodium channel which has an atypical ion selectivity filter and, unusually for insect channels, is highly insensitive to tetrodotoxin. We demonstrate that this channel has most likely arisen by adaptation (gene fission or duplication) of an invertebrate ancestral mono(hetero)meric channel. This is the only identifiable voltage-gated sodium channel homologue in the aphid genome(s), and the channel's novel selectivity filter motif (DENS instead of the usual DEKA found in other eukaryotes) may result in a loss of sodium selectivity, as indicated experimentally in mutagenised Drosophila channels.
  • References (51)
    51 references, page 1 of 6

    [1] Yu, F.H. and Catterall, W.A. (2004) The VGL chanome: a protein superfamily specialized for electrical signaling and ionic homeostasis. Science STKE 253, re15,

    [2] Liebeskind, B.J., Hillis, D.M. and Zakon, H.H. (2013) Independent acquisition of sodium selectivity in bacterial and animal sodium channels. Curr. Biol. 23, R948-949,

    [3] Gur Barzilai, M., Reitzel, A.M., Kraus, J.E., Gordon, D., Technau, U., Gurevitz, M. and Moran, Y. (2012) Convergent evolution of sodium ion selectivity in bacterial and animal sodium channels. Cell Rep. 2, 242-248, 10.1016/j.celrep.2012.06.016.

    [4] Zhou, W., Chung, I., Liu, Z., Goldin, A.L. and Dong, K. (2004) A voltage-gated calcium-selective channel encoded by a sodium channel-like gene. Neuron 42, 101-112,

    [5] Cui, Y.J., Yu, L.L., Xu, H.J., Dong, K. and Zhang, C.X. (2012) Molecular characterization of DSC1 orthologs in invertebrate species. Insect Biochem. Mol. Biol. 42, 353-359,

    [6] Zakon, H.H. (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc. Natl. Acad. Sci. U.S.A. 109, 10619-10625, http://

    [7] Lin, W.-H., Wright, D.E., Muraro, N.I. and Baines, R.A. (2009) Alternative splicing in the voltage-gated sodium channel DmNav regulates activation, inactivation and persistent current. J. Neurophysiol. 102, 1994-2006, http://

    [8] Eleftherianos, I., Foster, S.P., Williamson, M.S. and Denholm, I. (2008) Inheritance of L1014F and M918T sodium channel mutations associated with pyrethroid resistance in Myzus persicae. Biol. Lett. 4, 545-548, http://

    [9] The International Aphid Genomics Consortium (2010) Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol. 8, e1000313, 10.1371/journal.pbio.1000313.

    [10] Catterall, W.A. (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13-25,

  • Related Research Results (2)
  • Bioentities (1)
    3rvy Protein Data Bank
  • Metrics
    No metrics available