A moving mesh finite element algorithm for the adaptive solution of timedependent partial differential equations with moving boundaries
Article
English
OPEN
Baines, M.J.
;
Hubbard, M.E.
;
Jimack, P.K.
(2005)
A moving mesh finite element algorithm is proposed for the adaptive solution of nonlinear diffusion equations with moving boundaries in one and two dimensions. The moving mesh equations are based upon conserving a local proportion, within each patch of finite elements, of the total “mass” that is present in the projected initial data. The accuracy of the algorithm is carefully assessed through quantitative comparison with known similarity solutions, and its robustness is tested on more general problems.\ud \ud Applications are shown to a variety of problems involving timedependent partial differential equations with moving boundaries. Problems which conserve mass, such as the porous medium equation and a fourth order nonlinear diffusion problem, can be treated by a simplified form of the method, while problems which do not conserve mass require the full theory.

Metrics
0
views in local repository
64
downloads in local repository
The information is available from the following content providers: