Share  Bookmark

 Download from



[1] L. Auslander, L. Green and F. Hahn, Flows on homogeneous spaces. Ann. Math. Stud. 53. Princeton, NJ: Princeton University Press, 1963
[2] M. Baake and J. A. G. Roberts, \Reversing symmetry group of GL(2; Z) and P GL(2; Z) matrices with connections to cat maps and trace maps", J. Phys. A: Math. Gen., Vol. 30, pp. 1549{73, 1997.
[3] P. Cermelli and G. P. Parry, \The structure of uniform discrete defective crystals", Continuum Mechanics and Thermodynamics, Vol. 18, pp. 47{61, 2006.
[4] M. Chipot and D. Kinderlehrer, \Equilibrium con gurations of crystals", Arch. Rat. Mech. Anal., Vol. 103, pp. 237{277, 1988.
[5] C. Davini, \A proposal for a continuum theory of defective crystals", Arch. Rat. Mech. Anal., Vol. 96, pp. 295{317, 1986.
[6] C. Davini and G. P. Parry, \A complete list of invariants for defective crystals", Proc. Roy. Soc. London A Vol 432, pp. 341{365, 1991.
[7] C. Davini and G. P. Parry, \On defect preserving deformations in crystals". Int. J. Plasticity. Vol. 5, pp. 337{369, 1989.
[8] M. Elzanowski and G. P. Parry, \Material symmetry in a theory of continuously defective crystals", J. Elasticity, Vol. 74, pp. 215{237, 2004.
[9] I. Fonseca and G. P. Parry, \Equilibrium con guration of defective crystals", Arch. Rat. Mech. Anal., Vol. 120, pp. 245{283, 1992.
[10] V. V. Gorbatsevich, \Lattices in solvable Lie groups and deformations of homogeneous spaces", Math. USSR  Sb, Vol 20, pp.249{266, 1973.