Formfactors from free fermionic Fock fields, the Federbush model
 Publisher: Elsevier

Related identifiers: doi: 10.1016/S05503213(01)00462X 
Subject: QC  High Energy Physics  Theory

References
(26)
[1] P. Weisz, Phys. Lett. B67, 179 (1977); M. Karowski and P. Weisz, Nucl. Phys. B139 (1978) 445.
[2] F.A. Smirnov, Form factors in Completely Integrable Models of Quantum Field Theory, Adv. Series in Math. Phys. 14 (World Scientific, Singapore, 1992).
[3] V.P. Yurov and Al.B. Zamolodchikov, Int. J. Mod. Phys. A6 (1991) 3419.
[4] D. Fioriavanti and M. Stanishkov, Nucl. Phys. B577 (2000) 500; Nucl. Phys. B591 (2000) 685.
[5] M. Maillet, Correlation functions of quantum integrable models, JHEPproceeding on Nonperturbative quantum effects, Paris (2000).
[6] H. Babujian, A. Fring, M. Karowski and A. Zapletal, Nucl. Phys. B538 [FS] (1999) 535; S. Lukyanov and Al.B. Zamolodchikov, Form factors of solitoncreating operators in the sineGordon model, hepth/0102079; H. Babujian and M. Karowski, Phys. Lett. B471 (1999) 53; Exact form factors in integrable quantum field theories: the sineGordon model (II), hepth/0105178; A. Nakayashiki and Y. Takeyama, On Form Factors of SU(2) Invariant Thirring Model, mathph/0105040.
[8] S. Khoroshkin, A. LeClair and S. Pakuliak, Adv. Theor. Math. Phys. 3 (1999) 1227.
[9] A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. of Phys. 120 (1979) 253; M. Karowski, Field Theoretical Methods in Particle Physics, ed. W. Ru¨hl (Plenum, New York, 1980).
[10] L.D. Faddeev, Sov. Sci. Rev. Math. Phys. C1 (1980) 107.
[11] A. Fring, Int. Jour. of Mod. Phys. 11 (1996) 1337.

Similar Research Results
(5)

Metrics
No metrics available

 Download from



Cite this publication