The RACE Project : Robustness by Autonomous Competence Enhancement

Article English OPEN
Hertzberg, Joachim ; Zhang, Jianwei ; Zhang, Liwei ; Rockel, Sebastian ; Neumann, Bernd ; Lehmann, Jos ; Dubba, Krishna S.R. ; Cohn, Anthony G. ; Saffiotti, Alessandro ; Pecora, Federico ; Mansouri, Masoumeh ; Konečný, Štefan ; Günther, Martin ; Stock, Sebastian ; Seabra Lopes, Luis ; Oliveira, Miguel ; Lim, Gi Hyun ; Kasaei, Hamidreza ; Mokhtari, Vahid ; Hotz, Lothar ; Bohlken, Wilfried (2014)
  • Publisher: HITeC Hamburger Informatik Technologie-Center e. V., Hamburg, Germany
  • Journal: Publikationer från Örebro universitet (issn: _____384)
  • Related identifiers: doi: 10.1007/s13218-014-0327-y
  • Subject: Computer Sciences | Datavetenskap (datalogi)

This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system.
  • References (22)
    22 references, page 1 of 3

    1. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer wrt a background terminology. J. Applied Logic, 5(3):392-420, 2007.

    2. W. Bohlken, P. Koopmann, L. Hotz, and B. Neumann. Towards ontology-based realtime behaviour interpretation. In H.W. Guesgen and S. Marsland, editors, Human Behavior Recognition Technologies: Intelligent Applications for Monitoring and Security, pages 33-64. IGI Global, 2013.

    3. K.S.R. Dubba, A. G. Cohn, D.C. Hogg, M. Bhatt, and F. Dylla. Learning relational event models from video. Submitted for publication, 2014.

    4. K.S.R. Dubba, M.R. de Oliveira, G.H. Lim, H. Kasaei, L. Seabra Lopes, A.M. Tom´e, and A.G. Cohn. Grounding language in perception for scene conceptualization in autonomous robots. In AAAI 2014 Spring Symposium on Qualitative Representations for Robots, 2014.

    5. K. Erol, J. Hendler, and D.S. Nau. HTN Planning: Complexity and expressivity. In Proc. AAAI, 1994.

    6. D. Gentner. Structure-mapping: A theoretical framework for analogy. Cognitive science, 7(2):155-170, 1983.

    7. S.H. Kasaei, M. Oliveira, G.H. Lim, L. Seabra Lopes, and A.M. Tom´e. An interactive open-ended learning approach for 3d object recognition. In Proc. ICARSC, 2014.

    8. Sˇ. Konecny`, S. Stock, F. Pecora, and A. Saffiotti. Planning domain+ execution semantics: A way towards robust execution? In AAAI 2014 Spring Symposium on Qualitative Representations for Robots, 2014.

    9. J. Lehmann, B. Neumann, W. Bohlken, and L. Hotz. A robot waiter that predicts events by high-level scene interpretation. In Proc. 6th Intl. Conf. Agents and Artificial Intelligence, 2014.

    10. G.H. Lim, M. Oliveira, V. Mokhtari, S.H. Kasaei, L. Seabra Lopes, and M.A. Tom´e. Interactive teaching and experience extraction for learning about objects and robot activities. In Proc. RO-MAN, 2014 (accepted).

  • Metrics
    No metrics available
Share - Bookmark