Share  Bookmark

 Download from



[1] Vaibhav Gadre and ChiaYen Tsai. Minimal pseudoAnosov translation lengths on the complex of curves. Geom. Topol., 15(3):12971312, 2011, arXiv:1101.2692. [4]
[2] Howard Masur, Lee Mosher, and Saul Schleimer. On traintrack splitting sequences. Duke Math. J., 161(9):16131656, 2012, arXiv:1004.4564v1. [6]
[3] Howard A. Masur and Yair N. Minsky. Geometry of the complex of curves. I. Hyperbolicity. Invent. Math., 138(1):103149, 1999, arXiv:math/9804098v2. [1, 2, 4]
[4] Howard A. Masur and Yair N. Minsky. Quasiconvexity in the curve complex. In In the tradition of Ahlfors and Bers, III, volume 355 of Contemp. Math., pages 309320. Amer. Math. Soc., Providence, RI, 2004, arXiv:math/0307083v1. [1, 4]
[5] Lee Mosher. Train track expansions of measured foliations. 2003. http://math.newark.rutgers.edu/»mosher/. [4]
[6] Saul Schleimer. Notes on the complex of curves. http://www.warwick.ac.uk/»masgar/Maths/notes.pdf. [4]
[7] Itaru Takarajima. A combinatorial representation of curves using train tracks. Topology Appl., 106(2):169198, 2000. [6]