Novel materials for membrane separation processes

Doctoral thesis English OPEN
Lloyd, Michael C.

The aim of this work was to synthesise a series of hydrophilic derivatives of cis-1,2-dihydroxy-3,5-cyclohexadiene (cis-DHCD) and copolymerise them with 2-hydroxyethyl methacrylate (HEMA), to produce a completely new range of hydrogel materials. It is theorised that hydrogels incorporating such derivatives of cis-DHCD will exhibit good strength and elasticity in addition to good water binding ability. The synthesis of derivatives was attempted by both enzymatic and chemical methods. Enzyme synthesis involved the transesterification of cis-DHCD with a number of trichloro and trifluoroethyl esters using the enzyme lipase porcine pancreas to catalyse the reaction in organic solvent. Cyclohexanol was used in initial studies to assess the viability of enzyme catalysed reactions. Chemical synthesis involved the epoxidation of a number of unsaturated carboxylic acids and the subsequent reaction of these epoxy acids with cis-DHCD in DCC/DMAP catalysed esterifications. The silylation of cis-DHCD using TBDCS and BSA was also studied. The rate of aromatisation of cis-DHCD at room temperature was studied in order to assess its stability and 1H NMR studies were also undertaken to determine the conformations adopted by derivatives of cis-DHCD. The copolymerisation of diepoxybutanoate, diepoxyundecanoate, dibutenoate and silyl protected derivatives of cis-DHCD with HEMA, to produce a new group of hydrogels was investigated. The EWC and mechanical properties of these hydrogels were measured and DSC was used to determine the amount of freezing and non-freezing water in the membranes. The effect on EWC of opening the epoxide rings of the comonomers was also investigated
Share - Bookmark