Microcavity controlled coupling of excitonic qubits

Article, Preprint English OPEN
Albert, F. ; Sivalertporn, Kanchana ; Kasprzak, Jacek ; Strauß, M. ; Schneider, C. ; Höfling, S. ; Kamp, M. ; Forchel, A. ; Reitzenstein, S. ; Muljarov, Egor A. ; Langbein, Wolfgang Werner (2013)

Controlled non-local energy and coherence transfer enables light harvesting in photosynthesis and non-local logical operations in quantum computing. This process is intuitively pictured by a pair of mechanical oscillators, coupled by a spring, allowing for a reversible exchange of excitation. On a microscopic level, the most relevant mechanism of coherent coupling of distant quantum bits—like trapped ions, superconducting qubits or excitons confined in semiconductor quantum dots—is coupling via the electromagnetic field. Here we demonstrate the controlled coherent coupling of spatially separated quantum dots via the photon mode of a solid state microresonator using the strong exciton–photon coupling regime. This is enabled by two-dimensional spectroscopy of the sample’s coherent response, a sensitive probe of the coherent coupling. The results are quantitatively understood in a rigorous description of the cavity-mediated coupling of the quantum dot excitons. This mechanism can be used, for instance in photonic crystal cavity networks, to enable a long-range, non-local coherent coupling.
  • References (29)
    29 references, page 1 of 3

    1. Majer, J. et al. Coupling superconducting qubits via a cavity bus. Nature 449, 443-447 (2007).

    2. Schoelkopf, R. J. & Girvin, S. M. Wiring up quantum systems. Nature 451, 664-669 (2008).

    3. Leek, P. J. et al. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511R (2009).

    4. Chow, J. M. et al. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett. 107, 080502 (2011).

    5. Reithmaier, J. P. et al. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 432, 197-200 (2004).

    6. Yoshie, T. et al. Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200-203 (2004).

    7. Peter, E. et al. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    8. Ohta, R. et al. Strong coupling between a photonic crystal nanobeam cavity and a single quantum dot. Appl. Phys. Lett. 98, 173104 (2011).

    9. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859-863 (2008).

    10. Kasprzak, J. et al. Up on the Jaynes-Cummings ladder of a quantum-dot/ microcavity system. Nat. Mater. 9, 304-308 (2010).

  • Metrics
    No metrics available
Share - Bookmark