Inverse scaling trends for charge-trapping-induced degradation of FinFETs performance

Article English OPEN
Amoroso, Salvatore Maria ; Georgiev, Vihar P. ; Gerrer, Louis ; Towie, Ewan ; Wang, Xingsheng ; Riddet, Craig ; Brown, Andrew Robert ; Asenov, Asen (2014)

In this paper, we investigate the impact of a single discrete charge trapped at the top oxide interface on the performance of scaled nMOS FinFET transistors. The charge-trapping-induced gate voltage shift is simulated as a function of the device scaling and for several regimes of conduction-from subthreshold to ON-state. Contrary to what is expected for planar MOSFETs, we show that the trap impact decreases with scaling down the FinFET size and the applied gate voltage. By comparing drift-diffusion with nonequilibrium Green functions simulations, we show that quantum effects in the charge distribution and transport can reduce or amplify the impact of discrete traps in simulation of reliability resilience of scaled FinFETs.
  • References (14)
    14 references, page 1 of 2

    [1] D. A. Antoniadis and A. Khakifirooz, “MOSFET performance scaling: Limitations and future options,” in IEDM Tech. Dig., Dec. 2008, pp. 1-4.

    [2] D. Linten, G. Hellings, S.-H. Chen, and G. Groeseneken, “ESD in FinFET technologies: Past learning and emerging challenges,” in Proc. IRPS, Apr. 2013, pp. 2B.5.1-2B.5.8.

    [3] H. Kawasaki et al., “Challenges and solutions of FinFET integration in an SRAM cell and a logic circuit for 22 nm node and beyond,” in IEDM Tech. Dig., Dec. 2009, pp. 1-4.

    [4] M. Toledano-Luque et al., “Degradation of time dependent variability due to interface state generation,” in Proc. Symp. VLSI Technol., Jun. 2013, pp. T190-T191.

    [5] GARAND Version 2014.2. [Online]. Available: http://www.goldstandardsimulations.com

    [6] A. Martinez, M. Aldegunde, N. Seoane, A. R. Brown, J. R. Barker, and A. Asenov, “Quantum-transport study on the impact of channel length and cross sections on variability induced by random discrete dopants in narrow gate-all-around silicon nanowire transistors,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2209-2217, Aug. 2011.

    [7] K. Nehari, N. Cavassilas, J. L. Autran, M. Bescond, D. Munteanu, and M. Lannoo, “Influence of band structure on electron ballistic transport in silicon nanowire MOSFET's: An atomistic study,” Solid-State Electron., vol. 50, no. 4, pp. 716-721, Apr. 2006.

    [8] S. M. Amoroso, L. Gerrer, M. Nedjalkov, R. Hussin, C. Alexander, and A. Asenov, “Modeling carrier mobility in nano-MOSFETs in the presence of discrete trapped charges: Accuracy and issues,” IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1292-1298, May 2014.

    [9] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale FinFETs,” in Proc. IEDM, Dec. 2011, pp. 5.4.1-5.4.4.

    [10] B. Kaczer et al., “The relevance of deeply-scaled FET threshold voltage shifts for operation lifetimes,” in Proc. IRPS, Apr. 2012, pp. 5A.2.1-5A.2.6.

  • Metrics
    No metrics available
Share - Bookmark