Developing multidimensional metrics for evaluating paediatric neurodevelopmental disorders

Doctoral thesis English OPEN
Nakubulwa, Mable

Healthy brain functioning depends on efficient communication of information between brain regions, forming complex networks. By quantifying synchronisation between brain regions, a functionally connected brain network can be articulated. In neurodevelopmental disorders, where diagnosis is based on measures of behaviour and tasks, a measure of the underlying biological mechanisms holds promise as a potential clinical tool. Graph theory provides a tool for investigating the neural correlates of neuropsychiatric disorders, where there is disruption of efficient communication within and between brain networks. This research aimed to use recent conceptualisation of graph theory, along with measures of behaviour and cognitive functioning, to increase understanding of the neurobiological risk factors of atypical development. Using magnetoencephalography to investigate frequency-specific temporal dynamics at rest, the research aimed to identify potential biological markers derived from sensor-level whole-brain functional connectivity. Whilst graph theory has proved valuable for insight into network efficiency, its application is hampered by two limitations. First, its measures have hardly been validated in MEG studies, and second, graph measures have been shown to depend on methodological assumptions that restrict direct network comparisons. The first experimental study (Chapter 3) addressed the first limitation by examining the reproducibility of graph-based functional connectivity and network parameters in healthy adult volunteers. Subsequent chapters addressed the second limitation through adapted minimum spanning tree (a network analysis approach that allows for unbiased group comparisons) along with graph network tools that had been shown in Chapter 3 to be highly reproducible. Network topologies were modelled in healthy development (Chapter 4), and atypical neurodevelopment (Chapters 5 and 6). The results provided support to the proposition that measures of network organisation, derived from sensor-space MEG data, offer insights helping to unravel the biological basis of typical brain maturation and neurodevelopmental conditions, with the possibility of future clinical utility.
  • References (175)
    175 references, page 1 of 18

    Forbes, C. E., Poore, J. C., Krueger, F., Barbey, A. K., Solomon, J., & Grafma, J. (2014). The role of executive function and the dorsolateral prefrontal cortex in the expression of neuroticism and conscientiousness. Social Neuroscience, 9(2), 139-151.

    Fox, M. D., & Raichle, M. E., (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700- 711.

    Foy, J. M., & Earls, M. F. (2005). A process for developing community consensus regarding the diagnosis and management of attention-deficit/hyperactivity disorder. Paediatrics, 115(1), e97104.

    Frantzidis, C. A., Vivas, A. B., Tsolaki, A., Klados, M. A., Tsolaki, M., & Bamidis, P. D. (2014). Functional disorganization of small-world brain networks in mild Alzheimer's disease and amnestic Mild Cognitive Impairment: an EEG study using Relative Wavelet Entropy (RWE). Frontiers in Aging Neuroscience, 6(224), 1-11.

    Franzen, J. D., Heinrich-Graham, E., White, M. L., Wetzel, M. W., Knott, N. L., & Wilson, T. W. (2013). Atypical coupling between posterior regions of the default mode network in attention-deficit/hyperactivity disorder: a pharmaco-magnetoencephalography study. Journal of Psychiatry & Neuroscience, 38, 333-40.

    Frazier, T. W., Demaree, H. A., & Youngstrom, E. A. (2004). Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology, 18(3), 543-55.

    Frazier, T. W., Youngstrom, E. A., Glutting, J. J., & Watkins, M. W. (2007) ADHD and achievement: meta-analysis of the child, adolescent, and adult literatures and a concomitant study with college students. Journal of Learning Disabilities, 40, 49-65.

    Friedman, L. A., & Rapoport, J. L. (2015). Brain development in ADHD. Current Opinion in Neurology. 30, 106-111.

    Frigerio, A., Rucci, P., Ammaniti, M., Carlet, O., Cavolina, P., De Girolamo, G., … Molteni, M. (2009). Prevalence and correlates of mental disorders among adolescents in Italy: the PrISMA study. European Child and Adolescent Psychiatry, 18(4), 217-226.

    Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115- 125.

  • Related Research Results (6)
  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Aston Publications Explorer - IRUS-UK 0 74
Share - Bookmark