Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure

Article English OPEN
Smith, L.W. ; Al-Taie, H. ; Lesage, A.A.J. ; Thomas, K.J. ; Sfigakis, F. ; See, P. ; Griffiths, J.P. ; Farrer, I. ; Jones, G.A.C. ; Ritchie, D.A. ; Kelly, M.J. ; Smith, C.G. (2016)

© 2016 American Physical Society. © 2016 American Physical Society.We study 95 split gates of different size on a single chip using a multiplexing technique. Each split gate defines a one-dimensional channel on a modulation-doped GaAs/AlGaAs heterostructure, through which the conductance is quantized. The yield of devices showing good quantization decreases rapidly as the length of the split gates increases. However, for the subset of devices showing good quantization, there is no correlation between the electrostatic length of the one-dimensional channel (estimated using a saddle-point model) and the gate length. The variation in electrostatic length and the one-dimensional subband spacing for devices of the same gate length exceeds the variation in the average values between devices of different lengths. There is a clear correlation between the curvature of the potential barrier in the transport direction and the strength of the "0.7 anomaly": the conductance value of the 0.7 anomaly reduces as the barrier curvature becomes shallower. These results highlight the key role of the electrostatic environment in one-dimensional systems. Even in devices with clean conductance plateaus, random fluctuations in the background potential are crucial in determining the potential landscape in the active device area such that nominally identical gate structures have different characteristics.
  • References (53)
    53 references, page 1 of 6

    at www.repository.cam.ac.uk/handle/1810/249174. The authors thank A. R. Hamilton, J. von Delft, S. Ludwig, and E. T. Owen for helpful discussions, and R. D. Hall for e-beam exposure. y Present address: Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, United

    [1] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, J. Ahmed, J. E. F. Frost, D. G. Hasko, D. A. Ritchie, and G. A. C. Jones, J. Phys. C 21, L209 (1988).

    [2] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

    [3] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie, Phys. Rev. Lett. 77, 135 (1996).

    [4] T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).

    [5] H.-M. Lee, K. Murakia, E. Y. Chang, and Y. Hirayama, J. Appl. Phys. 100, 043701 (2006).

    [6] E. J. Koop, A. I Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, and C. H. van der Wal, J. Supercond. Nov. Magn 20, 433 (2007).

    [7] D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, A. R. Hamilton, J. L. O'Brien, N. E. Lumpkin, L. N. Pfei er, and K. W. West, Phys. Rev. B 63, 121311 (2001).

    [8] S. J. Koester, B. Brar, C. R. Bolognesi, E. J. Caine, A. Patlach, E. L. Hu, H. Kroemer, and M. J. Rooks, Phys. Rev. B 53 13063 (1996).

    [9] K. J. Thomas, D. L. Sawkey, M. Pepper, W. R. Tribe, I. Farrer, M. Y. Simmons and D. A. Ritchie, J. Phys.: Condens. Matter 16, L279-L286 (2004).

  • Metrics
    No metrics available
Share - Bookmark