A study of pattern recovery in recurrent correlation associative memories

References
(29)
[1] K. Steinbuch, “Das lern matrix,” Kybernetik, vol. 1, p. 36, 1961.
[2] D. J. Willshaw, Nature, vol. 222, p. 960, 1969.
[3] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” in Proc. Nat. Academy Science USA, vol. 79, 1982, pp. 25542558.
[4] E. Gardner, “Structure of metastable states in the Hopfield model,” J. Phys. A, vol. 19, no. 16, pp. 10471052, 1986.
[5] T. D. Chiueh and R. M. Goodman, “Recurrent correlation associative memories,” IEEE Trans. Neural Networks, vol. 2, pp. 275284, Mar. 1991.
[6] , “VLSI implementation of a highcapacity neural network associative memory,” in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 793800.
[7] C. C. Wang and H. S. Don, “An analysis of highcapacity discrete exponential BAM,” IEEE Trans. Neural Networks, vol. 6, pp. 492496, Mar. 1995.
[8] T. D. Chiueh and H. K. Tsai, “Multivalued associative memories based on recurrent networks,” IEEE Trans. Neural Networks, vol. 4, pp. 364366, Mar. 1993.
[9] P. Kanerva, Sparse Distributed Memory. Cambridge, MA: MIT Press, 1988.
[10] D. Milun and D. Sher, “Improving sampled probability distributions for Markov random fields,” Pattern Recognition Lett., vol. 14, pp. 781788, 1993.

Similar Research Results
(6)

Metrics
0views in OpenAIRE0views in local repository24downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads White Rose Research Online  IRUSUK 0 24

 Download from


Cite this publication