Leggett-Garg inequality violations with a large ensemble of qubits

Preprint, Article English OPEN
Lambert, Neill ; Debnath, Kamanasish ; Kockum, Anton Frisk ; Knee, George C. ; Munro, William J. ; Nori, Franco (2016)

We investigate how discrete internal degrees of freedom in a quasimacroscopic system affect the violation of the Leggett-Garg inequality, a test of macroscopic realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in nitrogen-vacancy (NV) centers in diamond, erbium in Y2SiO5, bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett-Garg inequality and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the nontrivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments.
  • References (60)
    60 references, page 1 of 6

    [1] E. Schro¨dinger, Die gegenwa¨rtige situation in der quantenmechanik, Naturwissenschaften 23, 823 (1935).

    [2] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1964).

    [3] A. J. Leggett and A. Garg, Quantum Mechanics Versus Macroscopic Realism: Is the Flux There When Nobody Looks?, Phys. Rev. Lett. 54, 857 (1985).

    [4] C. Emary, N. Lambert, and F. Nori, Leggett-Garg inequalities, Rep. Prog. Phys. 77, 016001 (2014).

    [5] M. Stern, G. Catelani, Y. Kubo, C. Grezes, A. Bienfait, D. Vion, D. Esteve, and P. Bertet, Flux Qubits with Long Coherence Times for Hybrid Quantum Circuits, Phys. Rev. Lett. 113, 123601 (2014).

    [6] J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature (London) 474, 589 (2011).

    [7] J. M. Chow, L. DiCarlo, J. M. Gambetta, A. Nunnenkamp, L. S. Bishop, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Detecting highly entangled states with a joint qubit readout, Phys. Rev. A 81, 062325 (2010).

    [8] M. E. Goggin, M. P. Almeida, M. Barbieri, B. P. Lanyon, J. L. O'Brien, A. G. White, and G. J. Pryde, Violation of the Leggett-Garg inequality with weak measurements of photons, Proc. Natl. Acad. Sci. U.S.A. 108, 1256 (2011).

    [9] G. C. Knee, S. Simmons, E. M. Gauger, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, K. M. Itoh, M. L. W. Thewalt, G. A. D. Briggs, and S. C. Benjamin, Violation of a Leggett-Garg inequality with ideal non-invasive measurements, Nat. Commun. 3, 606 (2012).

    [10] A. Palacios-Laloy, F. Mallet, F. Nguyen, P. Bertet, D. Vion, D. Esteve, and A. N. Korotkov, Experimental violation of a Bell's inequality in time with weak measurement, Nat. Phys. 6, 442 (2010).

  • Metrics
    No metrics available
Share - Bookmark