Convergence of simple adaptive Galerkin schemes based on h − h/2 error estimators

Article English OPEN
Ferraz-Leite, S. ; Ortner, Christoph ; Praetorius, Dirk (2008)

We discuss several adaptive mesh-refinement strategies based on (h − h/2)-error estimation. This class of adaptivemethods is particularly popular in practise since it is problem independent and requires virtually no implementational overhead. We prove that, under the saturation assumption, these adaptive algorithms are convergent. Our framework applies not only to finite element methods, but also yields a first convergence proof for adaptive boundary element schemes. For a finite element model problem, we extend the proposed adaptive scheme and prove convergence even if the saturation assumption fails to hold in general.
  • References (23)
    23 references, page 1 of 3

    1. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Wiley-Interscience [John Wiley & Sons], New-York (2000)

    2. Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Eng. 3, 181- 191 (1991)

    3. Bank, R.: Hierarchical bases and the finite element method. Acta Numerica 5, 1-45 (1996)

    4. Bank, R., Smith, R.: A posteriori error-estimates based on hierarchical bases. SIAM J. Numer. Anal. 30, 921-935 (1993)

    5. Bank, R., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44, 283-301 (1985)

    6. Bornemann, F., Erdmann, B., Kornhuber, R.: A-posteriori error-estimates for elliptic problems in 2 and 3 space dimensions. SIAM J. Numer. Anal. 33, 1188-1204 (1996)

    7. Carstensen, C., Faermann, B.: Mathematical foundation of a posteriori error estimates and adaptive mesh-refining algorithms for boundary integral equations of the first kind. Eng. Anal. Bound. Elem. 25, 497-509 (2001)

    8. Carstensen, C., Maischak, M., Praetorius, D., Stephan, E.P.: Residual-based a posteriori error estimate for hypersingular equation on surfaces. Numer. Math. 97(3), 397-425 (2004)

    9. Carstensen, C., Praetorius, D.: Averaging techniques for the effective numerical solution of Symm's integral equation of the first kind. SIAM J. Sci. Comput. 27, 1226-1260 (2006)

    10. Cascon, J., Kreuzer, C., Nochetto, R., Siebert, K.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524-2550 (2008)

  • Metrics
    No metrics available
Share - Bookmark