Precision charging of microparticles in plasma via the Rayleigh instability for evaporating charged liquid droplets

Article English OPEN
Bennet, E.D. ; Mahony, C.M.O. ; Potts, H.E. ; Everest, P. ; Rutherford, D. ; Askari, S. ; McDowell, D.A. ; Mariotti, D. ; Kelsey, C. ; Perez-Martin, F. ; Hamilton, N. ; Maguire, P. ; Diver, D.A. (2016)
  • Publisher: Elsevier
  • Journal: Journal of Aerosol Science, volume 100, pages 53-60 (issn: 0021-8502)
  • Related identifiers: doi: 10.1016/j.jaerosci.2016.05.002
  • Subject: Materials Science(all) | Pollution | Environmental Chemistry
    arxiv: Physics::Fluid Dynamics

In this paper we describe a novel method for delivering a precise, known amount of electric charge to a micron-sized solid target. Aerosolised microparticles passed through a plasma discharge will acquire significant electric charge. The fluid stability under evaporative stress is a key aspect that is core to the research. Initially stable charged aerosols subject to evaporation (i.e. a continually changing radius) may encounter the Rayleigh stability limit. This limit arises from the electrostatic and surface tension forces and determines the maximum charge a stable droplet can retain, as a function of radius. We demonstrate that even if the droplet charge is initially much less than the Rayleigh limit, the stability limit will be encountered as the droplet evaporates. The instability emission mechanism is strongly linked to the final charge deposited on the target, providing a mechanism that can be used to ensure a predictable charge deposit on a known encapsulated microparticle.
  • References (36)
    36 references, page 1 of 4

    Cazabat, Anne-Marie, & Guena, Geoffroy (2010). Evaporation of macroscopic sessile droplets. Soft Matter, 6(12), 2591-2612.

    Chernyak, V. (1995). The kinetic-theory of droplet evaporation. Journal of Aerosol Science, 26(September (6)), 873-885.

    Daly, R. T., Kerby, J. D., & Austin, D. E. (2013). Electrospray charging of minerals and ices for hypervelocity impact research. Planetary and Space Science, 75 (January), 182-187.

    Davis, E. J., & Bridges, M. A. (1994). The Rayleigh limit of charge revisited-light-scattering from exploding droplets. Journal of Aerosol Science, 25(September (6)), 1179-1199.

    delaMora, J. F. (1996). On the outcome of the Coulombic fission of a charged isolated drop. Journal of Colloid and Interface Science, 178(1), 209-218.

    Doyle, A., Moffett, D. R., & Vonnegut, B. (1964). Behaviour of evaporating electrically charged droplets. Journal of Colloid Science, 19(2), 136-143.

    Feng, X., Bogan, M. J., & Agnes, G. R. (2001). Coulomb fission event resolved progeny droplet production from isolated evaporating methanol droplets. Analytical Chemistry, 73(September (18)), 4499-4507.

    Gomez, A., & Tang, K. Q. (1994). Charge and fission of droplets in electrostatic sprays. Physics of Fluids, 6(January (1)), 404-414.

    Gu, W., Heil, P. E., Choi, H., & Kim, K. (2007). Comprehensive model for fine Coulomb fission of liquid droplets charged to rayleigh limit. Applied Physics Letters, 91(August (6)), 064104.

    Hogan, C. J., Jr., Biswas, P., & Chen, D. (2009). Charged droplet dynamics in the submicrometer size range. Journal of Physical Chemistry B, 113(January (4)), 970-976.

  • Metrics
    No metrics available