A model for the behavior of fluid droplets based on mean curvature flow
 Publisher: Society for Industrial and Applied Mathematics

Related identifiers: doi: 10.1137/110824905 
Subject: QA

References
(10)
[AI] S. Angenent, D. Chopp, and T. Ilmanen, A computed example of nonuniqueness of mean curvature flow in R3, Comm. Partial Differential Equations, 20 (1995), pp. 19371958.
[BB] G. Barles, S. Biton, M. Bourgoing, and O. Ley, Uniqueness results for quasilinear parabolic equations through viscosity solutions' methods, Calc. Var., 18 (2003), pp. 159 179.
[BO] J. Bode, Mean Curvature Flow of Cylindrical Graphs, Ph.D. thesis, Freie Universita¨t Berlin, 2007; available online from http://www.diss.fuberlin.de/diss/receive/FUDISS thesis 000000003363?lang=en.
[BR] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Math. Notes Princeton, Princeton University Press, Princeton, NJ, 1978.
[EC] K. Ecker, Regularity Theory for Mean Curvature Flow, Birkha¨user, Boston, MA, 2004.
[EH] K. Ecker and G. Huisken, Mean curvature evolution of entire graphs, Ann. Mat., 130 (1989), pp. 453471.
[LS] O. A. Lady˘zenskaja, V. A. Solonnikov, and N. N. Uralceva, Linear and QuasiLinear Equations of Parabolic Type, AMS, Providence, RI, 1968.
[RB] W. D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar, and H. A. Stone, Noncoalescence of oppositely charged drops, Nature, 461 (2009), pp. 377380.
[RB1] W. D. Ristenpart, J. C. Bird, A. Belmonte, and H. A. Stone, Critical angle for electrically driven coalescence of two conical droplets, Phys. Rev. Lett., 103 (2009), 164502.
[SI] M. Simon, Mean Curvature Flow of Rotationally Symmetric Hypersurfaces, Honours thesis, Australian National University, 1990.

Metrics
0views in OpenAIRE0views in local repository9downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Warwick Research Archives Portal Repository  IRUSUK 0 9

 Download from


Cite this publication