Share  Bookmark

 Download from



[AD93] C. Athorne and I. Ya. Dorfman. The Hamiltonian structure of the (2 + 1)dimensional AblowitzKaupNewellSegur hierarchy. J. Math. Phys., 34(8):35073517, 1993.
[BSW98] Frits Beukers, Jan A. Sanders, and Jing Ping Wang. One symmetry does not imply integrability. J. Differential Equations, 146(1):251260, 1998.
[CLO97] David Cox, John Little, and Donal O'Shea. Ideals, varieties, and algorithms. SpringerVerlag, New York, second edition, 1997. An introduction to computational algebraic geometry and commutative algebra.
I. Ya. Dorfman and A. S. Fokas. Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. Math. Phys., 33(7):25042514, 1992.
A. S. Fokas and P. M. Santini. Recursion operators and bihamiltonian structures in multidimensions .2. Commun. Math. Phys., 116(3):449474, 1988.
I. M. Gel'fand and L. A. Diki˘ı. Asymptotic properties of the resolvent of SturmLiouville equations, and the algebra of Kortewegde Vries equations. Uspehi Mat. Nauk, 30(5(185)):67100, 1975. English translation: Russian Math. Surveys, 30 (1975), no. 5, 77113.
I.M. Gel'fand and L.A. Dikii. Fractional powers of operatorsand Hamiltonian systems. Functional Analysis and its Applications, 10(4):259273, 1976.
Phys., 46(5), 2005. arXiv:hepth/0311206.
M. Hamanaka and K. Toda. Towards noncommutative integrable systems. Phys. Lett. A, 316(1 2):7783, 2003.
B.A. Kupershmidt. KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, volume 78 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, RI, 2000.
1uyy  Protein Data Bank 