Variational methods for geometric statistical inference

Subject: QA

References
(76)
[1] E. F. Abaya and G. L. Wise. Convergence of vector quantizers with applications to optimal quantization. SIAM Journal on Applied Mathematics, 44(1):183189, 1984.
[2] R. A. Adams. Sobolev Spaces. Pure and applied mathematics; a series of monographs and textbooks; v. 65. Academic Press, Inc. (London) Ltd., 1975.
[3] M. Aerts, G. Claeskens, and M. P. Wand. Some theory for penalized spline generalized additive models. Journal of Statistical Planning and Inference, 103(12):455470, 2002.
[4] S. Agapiou, S. Larsson, and A. M. Stuart. Posterior contraction rates for the Bayesian approach to linear illposed inverse problems. Stochastic Processes and their Applications, 123(10):38283860, 2013.
[5] G. Alberti and G. Bellettini. A nonlocal anisotropic model for phase transitions: Asymptotic behaviour of rescaled energies. European Journal of Applied Mathematics, 1998.
[6] F. Alter and V. Caselles. Uniqueness of the Cheeger set of a convex body. Nonlinear Analysis: Theory, Methods and Applications, 70(1):3244, 2009.
[7] L. Ambrosio, M. Miranda Jr., S. Maniglia, and D. Pallara. BV functions in abstract Wiener spaces. Journal of Functional Analysis, 258(3):785813, 2010.
[8] L. Ambrosio and A. Pratelli. Existence and stability results in the L1 theory of optimal transportation. In Optimal Transportation and Applications, volume 1813 of Lecture Notes in Mathematics, pages 123160. Springer Berlin Heidelberg, 2003.
[9] T. Amemiya. Advanced Econometrics. Havard University Press, 1985.
[14] E. AriasCastro, G. Lerman, and T. Zhang. Spectral clustering based on local PCA. arXiv preprint arXiv:1301.2007, 2013.

Metrics
0views in OpenAIRE0views in local repository64downloads in local repository
The information is available from the following content providers:
From Number Of Views Number Of Downloads Warwick Research Archives Portal Repository  IRUSUK 0 64

 Download from


Cite this publication