Intrinsic granularity in nanocrystalline boron-doped diamond films measured by scanning tunneling microscopy

Review, Article English OPEN
Willems, B. L. ; Dao, V. H. ; Vanacken, J. ; Chibotaru, L. F. ; Moshchalkov, V. V. ; Guillamon, I. ; Suderow, H. ; Vieira, S. ; JANSSENS, Stoffel ; WILLIAMS, Oliver ; HAENEN, Ken ; WAGNER, Patrick (2009)
  • Publisher: AMER PHYSICAL SOC
  • Related identifiers: doi: 10.1103/PhysRevB.80.224518
  • Subject: QC | boron; diamond; magnetic moments; nanostructured materials; plasma CVD; scanning tunnelling microscopy; scanning tunnelling spectroscopy; superconducting energy gap; superconducting thin films
    arxiv: Condensed Matter::Superconductivity

We report on low-temperature scanning tunneling microscopy/spectroscopy experiments performed on superconducting boron-doped nanocrystalline diamond (NCD) thin films prepared by chemical-vapor deposition methods. The most representative sample reveals the observed superconducting gap (Delta) highly modulated over a length scale on the order of similar to 30 nm, which is much shorter than the typical diamond grain size. The sample local and macroscopic behavior favors for the Delta modulation as being an intrinsic property of the NCD granules. On the other hand, Delta shows its temperature dependence [Delta(T)] consistent with the results obtained by Fominov and Feigel'man [Phys. Rev. B 63, 094518 (2001)], who studied theoretically the behavior of the superconducting gap of a BCS superconductor in contact with a normal layer by solving the one-dimensional Usadel equations on the superconducting side of the superconducting to normal interface. This work was supported by the Methusalem Funding by the Flemish Goverment, the European Science Foundation (ESF), NES program, the IAP-P6/42 project "Quantum Effects in Clusters and Nanowires," GOA, and FWO projects.
  • References (43)
    43 references, page 1 of 5

    1 M. Stoneham, Nature Mater. 3, 3 2004 .

    2 H. Ye, N. Tumilty, M. Bevilacqua, S. Curat, M. Nesladek, B. Bazin, P. Bergonzo, and R. B. Jackman, J. Appl. Phys. 103, 054503 2008 .

    3 E. A. Ekimov, V. A. Sidorov, E. D. Bauer, N. N. Mel'nik, N. J. Curro, J. D. Thompson, and S. M. Stishov, Nature London 428, 542 2004 .

    4 K. Thonke, Semicond. Sci. Technol. 18, S20 2003 .

    5 T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus, E. Bustarret, J. Pernot, F. Omnes, B. E. Sernelius, C. Persson, A. Ferreira da Silva, and C. Cytermann, Phys. Rev. B 75, 165313 2007 .

    6 W. Gajewski, P. Achatz, O. A. Williams, K. Haenen, E. Bustarret, M. Stutzmann, and J. A. Garrido, Phys. Rev. B 79, 045206 2009 .

    7 J. J. Mareš, P. Hubík, M. Nesládek, and J. Krištofik, Diamond Relat. Mater. 16, 921 2007 .

    8 Y. Takano, T. Takenouchi, S. Ishii, S. Ueda, T. Okutsu, I. Sakaguchi, H. Umezawa, H. Kawarada, and M. Tachiki, Diamond Relat. Mater. 16, 911 2007 .

    9 O. A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, and R. B. Jackman, Diamond Relat. Mater. 17, 1080 2008 .

    10 C. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Relat. Mater. 2, 158 1993 ; C. Wild, R. Kohl, N. Herres, W. MüllerSebert, and P. Koidl, ibid. 3, 373 1994 .

  • Metrics
    No metrics available
Share - Bookmark