The Moduli of Reducible Vector Bundles

Article, Preprint English OPEN
He, Yang-Hui ; Ovrut, Burt A. ; Reinbacher, Rene (2003)
  • Publisher: Institute of Physics
  • Related identifiers: doi: 10.1088/1126-6708/2004/03/043
  • Subject: QC | High Energy Physics - Theory
    arxiv: Mathematics::Algebraic Geometry | Mathematics::Symplectic Geometry

A procedure for computing the dimensions of the moduli spaces of reducible, holomorphic vector bundles on elliptically fibered Calabi-Yau threefolds X is presented. This procedure is applied to poly-stable rank n+m bundles of the form V + pi* M, where V is a stable vector bundle with structure group SU(n) on X and M is a stable vector bundle with structure group SU(m) on the base surface B of X. Such bundles arise from small instanton transitions involving five-branes wrapped on fibers of the elliptic fibration. The structure and physical meaning of these transitions are discussed.
  • References (20)
    20 references, page 1 of 2

    [1] P. Horava and E. Witten, “Heterotic and Type I String Dynamics from Eleven Dimensions,” Nucl. Phys. B460, 506 (1996) [hep-th/9510209]. P. Horava and E. Witten, “Eleven-Dimensional Supergravity on a Manifold with Boundary,” Nucl. Phys. B475, 94 (1996) [hep-th/9603142].

    [3] A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, “Heterotic M-theory in five dimensions,” Nucl. Phys. B 552, 246 (1999) [arXiv:hep-th/9806051].

    [4] K. Uhlenbeck and S.-T. Yau, Comm. Pure App. Math. 39 257 (1986), 42 703 (1986).

    [5] S. Donaldson, Proc. London Math. Soc. 3 1 (1985).

    [6] Robert Friedman, John Morgan, Edward Witten, “Vector Bundles And F Theory,” Commun.Math.Phys. 187 (1997) 679-743, hep-th/9701162.

    [7] Robert Friedman, John Morgan, Edward Witten, “Principal G-bundles over elliptic curves,” Math.Res.Lett. 5 (1998) 97-118, alg-geom/9707004.

    [9] Ron Donagi, Asian J. Math. 1, 214 (1997).

    [10] Burt A. Ovrut, Tony Pantev, Jaemo Park, “Small Instanton Transitions in Heterotic M-Theory,” JHEP 0005, 045 (2000), hep-th/0001133.

    [11] R. Donagi, A. Lukas, B. A. Ovrut and D. Waldram, “Holomorphic vector bundles and non-perturbative vacua in M-theory,” JHEP 9906, 034 (1999) [arXiv:hep-th/9901009].

    [12] R. Donagi, B. A. Ovrut, T. Pantev and D. Waldram, “Standard Models from Heterotic M-theory,” Adv. Theor. Math. Phys. 5, 93 (2002) [hep-th/9912208].

  • Metrics
    No metrics available
Share - Bookmark