The philosophy of Bayes factors and the quantification of statistical evidence

Article English OPEN
Morey, Richard D. ; Romeijn, Jan-Willem ; Rouder, Jeffrey N. (2016)
  • Publisher: Elsevier
  • Journal: Journal of Mathematical Psychology, volume 72, pages 6-18 (issn: 0022-2496)
  • Related identifiers: doi: 10.1016/j.jmp.2015.11.001
  • Subject: Applied Mathematics | BF | Psychology(all)

A core aspect of science is using data to assess the degree to which data provide evidence for competing claims, hypotheses, or theories. Evidence is by definition something that should change the credibility of a claim in a reasonable person’s mind. However, common statistics, such as significance testing and confidence intervals have no interface with concepts of belief, and thus it is unclear how they relate to statistical evidence. We explore the concept of statistical evidence, and how it can be quantified using the Bayes factor. We also discuss the philosophical issues inherent in the use of the Bayes factor.
  • References (76)
    76 references, page 1 of 8

    Aitkin, M. (1991). Posterior Bayes factors. Journal of the Royal Statistical Society. Series B. Statistical Methodology, 53(1), 111-142.

    Atkinson, A. C. (1978). Posterior probabilities for choosing a regression model. Biometrika, 65(1), 39-48.

    Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., et al. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461(7268), 1243-1247.

    Bartlett, M. S. (1957). A comment on D.V. Lindley's statistical paradox. Biometrika, 44, 533-534.

    Berger, J. O. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1, 385-402.

    Berger, J.O., & Bernardo, J.M. (1992). On the development of reference priors. In Bayesian statistics 4. Proceedings of the fourth valencia international meeting (pp. 35-49).

    Berger, J. O., & Pericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction. Journal of the American Statistical Association, 91(433), 109-122.

    Berger, J. O., & Pericchi, L. R. (1998). Accurate and stable Bayesian model selection: The median intrinsic Bayes factor. Sankhya¯ : The Indian Journal of Statistics, Series B (1960-2002), 60(1), 1-18.

    Berger, J. O., & Sellke, T. (1987). Testing a point null hypothesis: The irreconcilability of p values and evidence. Journal of the American Statistical Association, 82(397), 112-122.

    Berger, J. O., & Wolpert, R. L. (1988). The likelihood principle (2nd ed.). Hayward, CA: Institute of Mathematical Statistics.

  • Metrics
    No metrics available
Share - Bookmark