A climatology of clouds in marine cold air outbreaks in both hemispheres

Article English OPEN
Fletcher, JK ; Mason, S ; Jakob, C (2016)
  • Publisher: American Meteorological Society
  • Subject:
    mesheuropmc: complex mixtures | sense organs

A climatology of clouds within marine cold air outbreaks, primarily using long-term satellite observations, is presented. Cloud properties between cold air outbreaks in different regions in both hemispheres are compared. In all regions marine cold air outbreak clouds tend to be low level with high cloud fraction and low-to-moderate optical thickness. Stronger cold air outbreaks have clouds that are optically thicker, but not geometrically thicker, than those in weaker cold air outbreaks. There is some evidence that clouds deepen and break up over the course of a cold air outbreak event. The top-of-the-atmosphere longwave cloud radiative effect in cold air outbreaks is small because the clouds have low tops. However, their surface longwave cloud radiative effect is considerably larger. The rarity of cold air outbreaks in summer limits their shortwave cloud radiative effect. They do not contribute substantially to global shortwave cloud radiative effect and are, therefore, unlikely to be a major source of shortwave cloud radiative effect errors in climate models.
  • References (41)
    41 references, page 1 of 5

    Agee, E. M., 1987: Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317-341, doi:10.1016/0377-0265(87)90023-6.

    Atkinson, B., and J. Wu Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403-431, doi:10.1029/ 96RG02623.

    Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/ 2005GL023851.

    --, and Coauthors, 2015: Clouds, circulation and climate sensitivity. Nat. Geosci., 8, 261-268, doi:10.1038/ngeo2398.

    Bracegirdle, T. J., and E. W. Kolstad, 2010: Climatology and variability of Southern Hemisphere marine cold-air outbreaks. Tellus, 62A, 202-208, doi:10.1111/j.1600-0870.2009.00431.x.

    Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683-697, doi:10.1029/RG018i003p00683.

    Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 2613-2636, doi:10.1175/ 1520-0469(1999)056,2613:RACCIW.2.0.CO;2.

    --, and S. Pohlmann, 2000: Wintertime roll and cell convection over Greenland and Barents Sea regions: A climatology. J. Geophys. Res., 105, 15 559-15 566, doi:10.1029/ 1999JD900841.

    Ceccaldi, M., J. Delanoë, R. J. Hogan, N. L. Pounder, A. Protat, and J. Pelon, 2013: From CloudSat-CALIPSO to EarthCare: Evolution of the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J. Geophys. Res. Atmos., 118, 7962-7981, doi:10.1002/jgrd.50579.

    Ceppi, P., Y.-T. Hwang, D. M. Frierson, and D. L. Hartmann, 2012: Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys. Res. Lett., 39, L19708, doi:10.1029/2012GL053115.

  • Metrics
    No metrics available
Share - Bookmark