Bistability in the Complex Ginzburg-Landau Equation with Drift

Article English OPEN
Houghton, S.M. ; Tobias, S.M. ; Knobloch, E. ; Proctor, M.R.E. (2009)
  • Publisher: Elsevier

Properties of the complex Ginzburg-Landau equation with drift are studied focusing on the Benjamin-Feir stable regime. On a finite interval with Neumann boundary conditions the equation exhibits bistability between a spatially uniform time-periodic state and a variety of nonuniform states with complex time dependence. The origin of this behavior is identified and contrasted with the bistable behavior present with periodic boundary conditions and no drift.
  • References (20)
    20 references, page 1 of 2

    [1] I. S. Aranson, L. Kramer, The world of the complex GinzburgLandau equation, Rev. Mod. Phys. 74 (2002) 99-143.

    [2] L. Brusch, M. G. Zimmermann, M. van Hecke, M. Ba¨r, A. Torcini, Modulated amplitude waves and the transition from phase to defect chaos, Phys. Rev. Lett. 85 (2000) 86-89.

    [3] J. R. Cash, D. R. Moore, A high order method for the numerical solution of two-point boundary value problems, BIT Numerical Mathematics 20 (1980) 44-52.

    [4] H. Chat´e, Spatiotemporal intermittency regimes of the onedimensional complex Ginzburg-Landau equation, Nonlinearity 7 (1994) 185-204.

    [5] S. J. Cowley, F. T. Smith, On the stability of Poiseuille-Couette flow: a bifurcation from infinity, J. Fluid Mech. 156 (1985) 83- 100.

    [6] M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 (1993) 851-1112.

    [7] R. J. Deissler, Noise-sustained structure, intermittency, and the Ginzburg-Landau equation, J. Stat. Phys. 40 (1985) 371-395.

    [8] B. Eckhardt, T. M. Schneider, B. Hof, J.Westerweel, Turbulence transition in pipe flow, Ann. Rev. Fluid Mech. 39 (2007) 447- 468.

    [9] M. Golubitsky, D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Vol. I, New York: Springer, 1985.

    [10] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, New York: Springer, 1984.

  • Metrics
    No metrics available
Share - Bookmark