THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD

Article, Preprint English OPEN
Perley, D. A. ; Tanvir, N. R. ; Hjorth, J. ; Laskar, T. ; Berger, E. ; Chary, R. ; Postigo, A. de Ugarte ; Fynbo, J. P. U. ; Krühler, T. ; Levan, A. J. ; Michałowski, M. J. ; Schulze, S. (2016)
  • Publisher: American Astronomical Society
  • Journal: (vol: 817, pp: 8)
  • Related identifiers: doi: 10.3847/0004-637X/817/1/8
  • Subject: QB | QC | Astrophysics - Astrophysics of Galaxies | Astrophysics - High Energy Astrophysical Phenomena
    arxiv: Astrophysics::Galaxy Astrophysics | Astrophysics::Cosmology and Extragalactic Astrophysics | Astrophysics::High Energy Astrophysical Phenomena | Astrophysics::Earth and Planetary Astrophysics | Astrophysics::Solar and Stellar Astrophysics

We present rest-frame NIR luminosities and stellar masses for a large and uniformly-selected population of GRB host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find strong evolution in the host luminosity distribution between z~0.5 (median absolute NIR AB magnitude ~ -18.5, corresponding to M* ~ 3x10^8 M_sun and z~1.5), but negligible variation between z~1.5 and z~5 (median magnitude ~ -21.2, corresponding to M* ~ 5x10^9 M_sun). Dust-obscured GRBs dominate the massive host population but are only rarely seen associated with low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high-redshift while low-mass star-forming galaxies retain little dust in their ISM. Comparing our luminosity distributions to field surveys and measurements of the high-z mass-metallicity relation, our results have good consistency with a model in which the GRB rate per unit star-formation is constant in galaxies with gas-phase metallicity below approximately the Solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously-reported "excess" in the GRB rate beyond z>2; metals stifle GRB production in most galaxies at z<1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star-formation in low-mass galaxies undetectable to Spitzer to be a small minority at most redshifts (~10% at z~2, ~25% at z~3, and ~50% at z=3.5-6.0).
  • References (10)

    Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481 Blain, A. W., & Natarajan, P. 2000, MNRAS, 312, L35 Bloom, J. S., Kulkarni, S. R., & Djorgovski, S. G. 2002, AJ, 123, 1111 Boissier, S., Salvaterra, R., Le Floc'h, E., et al. 2013, A&A, 557, A34 Bouwens, R. J., Illingworth, G. D., Franx, M., et al. 2009, ApJ, 705, 936 Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2014, ApJ, 793, 115 Bromberg, O., Nakar, E., & Piran, T. 2011, ApJL, 739, L55 Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000

    Butler, N. R., Bloom, J. S., & Poznanski, D. 2010, ApJ, 711, 495 Cameron, E. 2011, PASA, 28, 128

    Castellano, M., Fontana, A., Grazian, A., et al. 2012, A&A, 540, A39 Castro Cerón, J. M., Michałowski, M. J., Hjorth, J., et al. 2010, ApJ, 721, 1919 Chabrier, G. 2003, PASP, 115, 763

    Chen, H.-W., Perley, D. A., Pollack, L. K., et al. 2009, ApJ, 691, 152 Cucchiara, A., Levan, A. J., Fox, D. B., et al. 2011, ApJ, 736, 7 Djorgovski, S. G., Frail, D. A., Kulkarni, S. R., et al. 2001, ApJ, 562, 654 Erb, D. K., Shapley, A. E., Pettini, M., et al. 2006, ApJ, 644, 813 Fazio, G. G., Hora, J. L., Allen, L. E., et al. 2004, ApJS, 154, 10 Finkelstein, S. L., Papovich, C., Salmon, B., et al. 2012, ApJ, 756, 164 Fryer, C. L., & Heger, A. 2005, ApJ, 623, 302

    Fynbo, J. P. U., Prochaska, J. X., Sommer-Larsen, J., Dessauges-Zavadsky, M., & Møller, P. 2008, ApJ, 683, 321

    Fynbo, J. P. U., Starling, R. L. C., Ledoux, C., et al. 2006, A&A, 451, L47 Fynbo, J. P. U., Jakobsson, P., Prochaska, J. X., et al. 2009, ApJS, 185, 526 Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS, 206, 10 Graham, J. F., & Fruchter, A. S. 2013, ApJ, 774, 119

    Greiner, J., Fox, D. B., Schady, P., et al. 2015, ApJ, 809, 76 Hashimoto, T., Perley, D. A., Ohta, K., et al. 2015, ApJ, 806, 250 Heger, A., Langer, N., & Woosley, S. E. 2000, ApJ, 528, 368 Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581 Hunt, L. K., Palazzi, E., Michałowski, M. J., et al. 2014, A&A, 565, A112 Izzard, R. G., Ramirez-Ruiz, E., & Tout, C. A. 2004, MNRAS, 348, 1215 Jakobsson, P., Hjorth, J., Malesani, D., et al. 2012, ApJ, 752, 62 Kajisawa, M., Ichikawa, T., Tanaka, I., et al. 2011, PASJ, 63, 379 Kelly, P. L., Filippenko, A. V., Modjaz, M., & Kocevski, D. 2014, ApJ, 789, 23 Kewley, L. J., & Dopita, M. A. 2002, ApJS, 142, 35

    Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183

    Kistler, M. D., Yüksel, H., Beacom, J. F., & Stanek, K. Z. 2008, ApJL, 673, L119

    Kobulnicky, H. A., & Kewley, L. J. 2004, ApJ, 617, 240

  • Metrics
    No metrics available
Share - Bookmark