Simulations of Nanocrystals Under Pressure: Combining Electronic Enthalpy and Linear-Scaling Density-Functional Theory

Article, Unknown, Preprint English OPEN
Corsini, Niccolò R. C. ; Greco, Andrea ; Hine, Nicholas D. M. ; Molteni, Carla ; Haynes, Peter D. (2013)
  • Publisher: American Institute of Physics
  • Related identifiers: doi: 10.1063/1.4819132, doi: 10.1063/1.4819132
  • Subject: INDUCED AMORPHIZATION | POROUS SILICON | ROCK-SALT TRANSITION | Condensed Matter - Mesoscale and Nanoscale Physics | SI35H36 CLUSTER | INDUCED STRUCTURAL TRANSFORMATIONS | FINITE SYSTEMS | QD | PHASE-TRANSITIONS | MOLECULAR-DYNAMICS METHOD | Condensed Matter - Materials Science | SEMICONDUCTOR NANOCRYSTALS | SILICON NANOCRYSTALS

<p>We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.</p>
  • References (19)
    19 references, page 1 of 2

    65J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957).

    66P. Sharma and S. Ganti, J. Appl. Mech. 71, 663 (2004).

    67S. J. Duclos, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 41, 12021 (1990).

    68H. Katzke and P. Tolédano, J. Phys.: Condens. Matter 19, 275204 (2007).

    69H. Olijnyk, S. Sikka, and W. B. Holzapfel, Phys. Lett. A 103, 137 (1984).

    70S. K. Deb, M. Wilding, M. Somayazulu, and P. F. McMillan, Nature (London) 414, 528 (2001).

    71N. Garg, K. K. Pandey, K. V. Shanavas, C. A. Betty, and S. M. Sharma, Phys. Rev. B 83, 115202 (2011).

    72K. K. Pandey, N. Garg, K. V. Shanavas, S. M. Sharma, and S. K. Sikka, J. App. Phys. 109, 113511 (2011).

    73D. Daisenberger, M. Wilson, P. F. McMillan, R. Q. Cabrera, M. C. Wilding, and D. Machon, Phys. Rev. B 75, 224118 (2007).

    74D. Daisenberger, T. Deschamps, B. Champagnon, M. Mezouar, R. Quesada Cabrera, M. Wilson, and P. F. McMillan, J. Phys. Chem. B 115, 14246 (2011).

  • Metrics
    No metrics available