Simultaneous Measurement of the Dissolution Kinetics of Responsive DNA Hydrogels at Multiple Length Scales

Article English OPEN
Simon, Anna J. ; Walls-Smith, Luke T. ; Fredd, Matthew J. ; Fong, Yi Fong ; Gubala, Vladimir ; Plaxco, Kevin W. (2016)

Recent years have seen increasing study of stimulus-responsive hydrogels constructed from aptamer-connected DNA building blocks. Presumably due to a lack of simple, quantitative tools with which to measure gel responsiveness, however, the literature describing these materials is largely qualitative. In response we demonstrate here simple, time-resolved, multiscale methods for measuring the response kinetics of these materials. Specifically, by employing trace amounts of fluorophore-quencher labeled crosslinkers and the rheology of entrapped fluorescent particles we simultaneously measure dissolution at molecular, hundred-nanometer, and hundred-micron length-scales. For our test-bed system, an adenine-responsive hydrogel, we find biphasic response kinetics dependent on both effector concentration and depth within the gel and a dissolution pattern uniform at scales longer than a few times the monomer-monomer distance. Likewise, we find that, in agreement with theoretical predictions, dissolution kinetics over the hundred nanometer length scale exhibit a power-law-like dependence on the fraction of disrupted crosslinks before a distinct crossover from solid-like to liquid-like behavior
  • References (7)

    2. Zlotnick, A.; Mukhopadhyay, S. Virus Assembly, Allostery, and Antivirals.

    3. Jahn, R.; Fasshauer, D. Molecular Machines Governing Exocytosis of Synaptic Vesicles.

    5 4. Meyers, M. A.; McKittrick, H; Chen, P.*Y. Structural Biological Materials: Critical 9. Helwa, Y.; Dave, N.; Froidevaux, R.; Samadi, A.; Liu, J. Aptamer*Functionalized Hydrogel 10. Wei, X.; Tian, T.; Jia, S.; Zhu, Z.; Ma, Y.; Sun, J.; Lin, Z.; Yang C. J. Target*Responsive 11. Zhang, L.; Lei, J.; Liu, L.; Li, C.; Ju, H. Self*Assembled DNA Hydrogel as Switchable 16. Stauffer, D.; Coniglio, A.; Adam, M. Gelation and Critical Phenomena.

    17. Broedersz, C.P.; Mao, X.; Lubensky, T.C.; Mackintosh, F.C. Criticality and Isostaticity in 18. Mao, X.; Stenull, O.; Lubensky, T.C. Effective*Medium Theory of a Filamentous Triangular 26. Larsen, T. L.; Furst, E. M. Microrheology of The Liquid*Solid Transition During Gelation.

    27. Schultz, K. M.; Baldwin, A. D.; Kiick, K. L.; Furst, E.M. Measuring the Modulus and 28. Cingli, H. E.; Rombouts, W. H.; Van Der Gucht, J.; Cohen Stuart, M. A.; Sprakel, J.

    29. Wehrman, M. D.; Lindberg, S.; Schultz, K. M. Quantifying the Dynamic Transition of 34. Santalucia, J. R. A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest* 37. Crocker, J. D.; Valentine, M. T.; Weeks, E.R.; Gisler, T.; Kaplan, P.D.; Yodh, A.G.; Weitz, 38. Chan, H. S.; Dill, K. A. Intrachain Loops in Polymers. 6 42. Ercolani, G. Assessment of Cooperativity in Self*Assembly.

    43. Draper, E. R.; McDonald, T. O.; Adams, D.J. A Low Molecular Weight Hydrogel with 44. Smith, M. M.; Smith, D. K. Self*Sorting Multi*Gelator Gels - Mixing and Ageing Effects in

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    4
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Kent Academic Repository - IRUS-UK 0 4
Share - Bookmark