Metabolic modeling and analysis of the metabolic switch in Streptomyces coelicolor\ud

Article English OPEN
Alam, Mohammad T. ; Merlo, Maria E. ; Hodgson, D. A. ; Wellington, E. M. H. ; Takano, Eriko ; Breitling, Rainer ; HASH(0x561a11c5ad38) (2010)
  • Publisher: BioMed Central Ltd.
  • Journal: BMC Genomics, volume 11, pages 202-202 (issn: 1471-2164, eissn: 1471-2164)
  • Related identifiers: doi: 10.1186/1471-2164-11-202, pmc: PMC2853524
  • Subject: Q1 | QR | Biotechnology | QH426-470 | Research Article | Genetics | TP248.13-248.65

<p>Abstract</p> <p>Background</p> <p>The transition from exponential to stationary phase in <it>Streptomyces coelicolor </it>is accompanied by a major metabolic switch and results in a strong activation of secondary metabolism. Here we have explored the underlying reorganization of the metabolome by combining computational predictions based on constraint-based modeling and detailed transcriptomics time course observations.</p> <p>Results</p> <p>We reconstructed the stoichiometric matrix of <it>S. coelicolor</it>, including the major antibiotic biosynthesis pathways, and performed flux balance analysis to predict flux changes that occur when the cell switches from biomass to antibiotic production. We defined the model input based on observed fermenter culture data and used a dynamically varying objective function to represent the metabolic switch. The predicted fluxes of many genes show highly significant correlation to the time series of the corresponding gene expression data. Individual mispredictions identify novel links between antibiotic production and primary metabolism.</p> <p>Conclusion</p> <p>Our results show the usefulness of constraint-based modeling for providing a detailed interpretation of time course gene expression data.</p>
  • References (31)
    31 references, page 1 of 4

    1. Kolter R, Siegele DA, Tormo A: The stationary phase of the bacterial life cycle. Annu Rev Microbiol 1993, 47:855-874.

    2. Roszak DB, Colwell RR: Survival strategies of bacteria in the natural environment. Microbiol Rev 1987, 51(3):365-379.

    3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, et al: Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417(6885):141-147.

    4. Challis GL, Hopwood DA: Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 2003, 100(Suppl 2):14555-14561.

    5. Borodina I, Siebring J, Zhang J, Smith CP, van Keulen G, Dijkhuizen L, Nielsen J: Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion. J Biol Chem 2008, 283(37):25186-25199.

    6. Borodina I, Krabben P, Nielsen J: Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. Genome Res 2005, 15(6):820-829.

    7. Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen OM, Sletta H, Alam MT, Merlo ME, Moore J, et al: The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 2010, 11:10.

    8. Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in silico models: the constraints-based approach. Trends Biotechnol 2003, 21(4):162-169.

    9. Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2004, 2(11):886-897.

    10. Durot M, Bourguignon PY, Schachter V: Genome-scale models of bacterial metabolism: reconstruction and applications. FEMS Microbiol Rev 2009, 33(1):164-190.

  • Related Research Results (2)
  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark