publication . Article . 2015

FinFET centric variability-aware compact model extraction and generation technology supporting DTCO

Wang, Xingsheng; Cheng, Binjie; Reid, David; Pender, Andrew; Asenov, Plamen; Millar, Campbell; Asenov, Asen;
Open Access English
  • Published: 01 Oct 2015
  • Publisher: Institute of Electrical and Electronics Engineers
  • Country: United Kingdom
Abstract
In this paper, we present a FinFET-focused variability-aware compact model (CM) extraction and generation technology supporting design-technology co-optimization. The 14-nm CMOS technology generation silicon on insulator FinFETs are used as testbed transistors to illustrate our approach. The TCAD simulations include a long-range process-induced variability using a design of experiment approach and short-range purely statistical variability (mismatch). The CM extraction supports a hierarchical CM approach, including nominal CM extraction, response surface CM extraction, and statistical CM extraction. The accurate CM generation technology captures the often non-Ga...
Subjects
ACM Computing Classification System: Hardware_INTEGRATEDCIRCUITSHardware_PERFORMANCEANDRELIABILITY
Related Organizations
Download from
28 references, page 1 of 2

[1] C. Auth, C. Allen, A. Blattner, et al., “A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors,” in Proc. Symp. VLSI Tech. Dig., 2012, pp.131-132.

[2] N. Planes, O. Weber, V. Barral, et al., “28 nm FDSOI technology platform for high-speed low-voltage digital applications,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 133-134.

[3] In E. Karl, Z. Guo, Y.-G. Ng, J. Keane, U. Bhattacharya, K. Zhang, “The impact of assist-circuit design for 22nm SRAM and beyond,” in Proc. IEEE IEDM, 2012, pp.561-564.

[4] B. Nikolic, J.-H. Park, J. Kwak, et al., “Technology variability from a design perspective,” IEEE Trans. Circuits and systems-I: regular papers, vol.58 no.9, pp.1996-2009, Sept. 2011.

[5] A. Asenov, “Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 µm MOSFETs: A 3D “atomistic” simulation study,” IEEE Trans. Electron Dev. Vol. 45, No. 12, pp. 2505-2513, 1998. [OpenAIRE]

[6] H. F. Dadgour, K. Endo, V. K. De, K. Banerjee, “Grain-Orientation Induced Work Function Variation in Nanoscale Metal-Gate Transistors-Part I: Modeling, Analysis, and Experimental Validation,” IEEE Trans. Elec. Dev., vol.57 no.10, pp.2504-2514, Oct. 2010.

[7] X. Wang, A. R. Brown, N. M. Idris, S. Markov, G. Roy and A. Asenov, “Statistical Threshold-Voltage Variability in Scaled Decananometer Bulk HKMG MOSFETs: A Full-Scale 3-D Simulation Scaling Study,” IEEE Trans. on Electron Devices, Vol. 58, No. 8, pp. 2293-2301, Aug. 2011.

[8] T. Matsukawa, Y. Liu, W. Mizubayashi, et al., “Suppressing Vt and Gm variability of FinFETs using amorphous metal gates for 14nm and beyond,” in Proc. IEDM, 2012, pp.8.2.1-8.2.4

[9] A. Asenov, S. Kaya and A. R. Brown, “Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness,” IEEE Trans. on Electron Devices, Vol. 50, No. 5, pp. 1254-1260, 2003. [OpenAIRE]

[10] X. Wang, B. Cheng, A. R. Brown, C. Millar, J. B. Kuang, S. Nassif, and A. Asenov, “Interplay between process-induced and statistical variability in 14-nm CMOS technology double-gate SOI FinFETs,” IEEE Trans. on Electron Devices, Vol.60 No.8, pp.2485-2492, August 2013. [OpenAIRE]

[11] S. Nassif, “Design for variability in DSM technologies,” in Proc. ISQED, 2000, pp.451-454.

[12] T. Austin, V. Bertacco, D. Blaauw, and T. Mudge, “Opportunities and Challenges for better than worst-case design,” in Proc. ASP-DAC, 2005, pp.I-1-7.

[13] S.-Y. Wu, C. Y. Lin, M. C. Chiang, et al., “An Enhanced 16nm CMOS Technology Featuring 2nd Generation FinFET Transistors and Advanced Cu/Low-k Interconnect for Low Power and High Performance Applications,” in Proc. IEEE IEDM, 2014, pp.3.1.1-3.1.4.

[14] S. Natarajan, M. Agostinelli, S. Akbar, et al., “A 14nm Logic Technology Featuring 2nd-Generation FinFET transistors, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 m2 SRAM cell size,” in Proc. IEEE IEDM, 2014, pp.3.7.1-3.7.4.

[15] C.-H. Lin, B. Greene, S. Narasimha, et al., “High Performance 14nm SOI FinFET CMOS Technology with 0.0174µm2 embedded DRAM and 15 Levels of Cu Metallization,” in Proc. IEEE IEDM, 2014, pp.3.8.1-3.8.4.

28 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue