On certain blocks of Schur algebras

Article English OPEN
Chuang, J. ; Tan, K. M. (2001)
  • Subject: QA
    arxiv: Mathematics::Representation Theory | Mathematics::Rings and Algebras

In this paper, what is already known about defect 2 blocks of symmetric groups is used to deduce information about the corresponding blocks of Schur algebras. This information includes Ext-quivers and decomposition numbers, as well as Loewy structures of the Weyl modules, principal indecomposable modules and tilting modules.
  • References (11)
    11 references, page 1 of 2

    [1] J. Chuang and K. M. Tan, `On Young modules of defect 2 blocks of symmetric group algebras', J. Algebra, to appear.

    [2] S. Donkin, `On Schur algebras and related algebras, II', J. Algebra 111 (1987) 354{ 364.

    [3] S. Donkin, `On tilting modules for algebraic groups', Math. Z. 212 (1993) 39{60.

    [4] J. A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics 830 (Springer-Verlag, Berlin, 1980).

    [5] G. D. James, `Trivial source modules for symmetric groups', Arch. Math. (Basel) 41 (1983) 294{300.

    [6] G. D. James, The representation theory of the symmetric groups , Lecture Notes in Mathematics 682 (Springer-Verlag, Berlin, 1978).

    [7] G. D. James and A. Kerber, The representation theory of the symmetric group, Encyclop dia of Mathematics and its Applications 16 (Addison-Wesley, Reading, Mass., 1981).

    [8] S. Martin, Schur algebras and representation theory , Cambridge Tracts in Mathematics 112 (Cambridge Univ. Press, Cambridge, 1993).

    [9] M. J. Richards, `Some decomposition numbers for Hecke algebras of general linear groups', Math. Proc. Cambridge Philos. Soc. 119 (1996) 383{402.

    [10] J. C. Scopes, `Symmetric group blocks of defect two', Quart. J. Math. Oxford (2) 46 (1995) 201{234.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    City Research Online - IRUS-UK 0 22
Share - Bookmark