The moduli space of (111)-polarized abelian surfaces is unirational

Article English OPEN
Gross, M. W. ; Popescu, Sorin (2001)
  • Publisher: Cambridge University Press
  • Related identifiers: doi: 10.1023/A:1017518027822
  • Subject: QA
    arxiv: Mathematics::Algebraic Geometry | Physics::History of Physics | Quantitative Biology::Cell Behavior

We prove that the moduli space $\cal A$11lev of <$>(1,11)-polarized Abelian surfaces with level structure of canonical type is birational to Klein's cubic hypersurface in P4. Therefore, $\cal A$11lev is unirational but not rational, and there are no Γ11-cusp forms of weight 3. The same methods also provide an easy proof of the rationality of $\cal A$9lev.
  • References (48)
    48 references, page 1 of 5

    Adler, A.: Appendices to Moduli of Abelian Varieties, Lecture Notes in Math. 1644, Springer-Verlag, New York, 1996.

    Press, New York, 1999, pp. 175^219.

    1644, Springer Verlag, New York, 1996.

    Barth, W.: Quadratic equations for level-3 Abelian surfaces, In: Abelian Varieties (Egloffstein, 1993), de Gruyter, Berlin, 1995, pp. 1^18.

    Barth, W. and Bauer, Th.: Smooth quartic surfaces with 352 conics, Manuscripta Math. 85(3^4) (1994), 409^417.

    Bauer, Th.: Quartic surfaces with 16 skew conics, J. Reine Angew. Math. 464 (1995), 207^217.

    [Bea] Beauville, A.: Les singularit e¨s du diviseur Y de la jacobienne interm e¨diaire de l'hypersurface cubique dans P4, In: Algebraic Threefolds (Varenna, 1981) Lecture Notes in Math. 947, Springer-Verlag, New York, 1982, pp. 190^208.

    [BE] Buchsbaum, D. and Eisenbud, D.: Algebra structures for ¢nite free resolutions, and some structure theorems for ideals of codimension 3. Amer. J. Math. 99(3) (1977), 447^485.

    [CG] Clemens, C. H. and Grif¢ths, P.: The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281^356.

    [CNPW] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. With computational assistance from J. G. Thackray, Oxford University Press, Oxford, 1985.

  • Metrics
    0
    views in OpenAIRE
    0
    views in local repository
    84
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    Warwick Research Archives Portal Repository - IRUS-UK 0 84