Multi-decadal accumulation of anthropogenic and remineralized dissolved inorganic carbon at the Extended Ellett Line in the northeast Atlantic Ocean

Article English OPEN
Humphreys, M.P. ; Griffiths, A.M. ; Achterberg, E.P. ; Holliday, N.P. ; Rérolle, V.M.C. ; Barraqueta, J-L.M. ; Couldrey, M.P. ; Oliver, K.I.C. ; Hartman, S.E. ; Esposito, M. ; Boyce, A.J. (2016)
  • Publisher: American Geophysical Union
  • Related identifiers: doi: 10.1002/2015GB005246
  • Subject: [ SDU.STU.OC ] Sciences of the Universe [physics]/Earth Sciences/Oceanography

International audience; Marine carbonate chemistry measurements have been carried out annually since 2009 during UK research cruises along the Extended Ellett Line (EEL), a hydrographic transect in the northeast Atlantic Ocean. The EEL intersects several water masses that are key to the global thermohaline circulation, and therefore the cruises sample a region in which it is critical to monitor secular physical and biogeochemical changes. We have combined results from these EEL cruises with existing quality-controlled observational data syntheses to produce a hydrographic time series for the EEL from 1981 to 2013. This reveals multidecadal increases in dissolved inorganic carbon (DIC) throughout the water column, with a near-surface maximum rate of 1.80 ± 0.45 μmol kg<sup>-1</sup> yr<sup>-1</sup>. Anthropogenic CO<sub>2</sub> accumulation was assessed, using simultaneous changes in apparent oxygen utilization (AOU) and total alkalinity (TA) as proxies for the biogeochemical processes that influence DIC. The stable carbon isotope composition of DIC (δ<sup>13</sup>C<sub>DIC</sub>) was also determined and used as an independent test of our method. We calculated a volume-integrated anthropogenic CO<sub>2</sub> accumulation rate of 2.8 ± 0.4 mg C m<sup>-3</sup> yr<sup>-1</sup> along the EEL, which is about double the global mean. The anthropogenic CO<sub>2</sub> component accounts for only 31 ± 6% of the total DIC increase. The remainder is derived from increased organic matter remineralization, which we attribute to the lateral redistribution of water masses that accompanies subpolar gyre contraction. Output from a general circulation ecosystem model demonstrates that spatiotemporal heterogeneity in the observations has not significantly biased our multidecadal rate of change calculations and indicates that the EEL observations have been tracking distal changes in the surrounding North Atlantic and Nordic Seas.
  • References (24)
    24 references, page 1 of 3

    Ahn, J., E. J. Brook, L. Mitchell, J. Rosen, J. R. McConnell, K. Taylor, D. Etheridge, and M. Rubino (2012), Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core, Global Biogeochem. Cycles, 26, GB2027, doi:10.1029/2011GB004247.

    Anderson, L. A. (1995), On the hydrogen and oxygen content of marine phytoplankton, Deep Sea Res., Part I, 42(9), 1675-1680, doi:10.1016/ 0967-0637(95)00072-E.

    Anderson, L. A., and J. L. Sarmiento (1994), Redfield ratios of remineralization determined by nutrient data analysis, Global Biogeochem. Cycles, 8(1), 65-80, doi:10.1029/93GB03318.

    Barrier, N., C. Cassou, J. Deshayes, and A.-M. Treguier (2014), Response of North Atlantic Ocean circulation to atmospheric weather regimes, J. Phys. Oceanogr., 44(1), 179-201, doi:10.1175/JPO-D-12-0217.1.

    Bates, N. R., M. H. P. Best, K. Neely, R. Garley, A. G. Dickson, and R. J. Johnson (2012), Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean, Biogeosciences, 9(7), 2509-2522, doi:10.5194/bg-9-2509-2012.

    Bates, N. R., Y. M. Astor, M. J. Church, K. Currie, J. E. Dore, M. González-Dávila, L. Lorenzoni, F. Muller-Karger, J. Olafsson, and J. M. Santana Casiano (2014), A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification, Oceanography, 27(1), 126-141, doi:10.5670/oceanog.2014.16.

    Brewer, P. G. (1978), Direct observation of the oceanic CO2 increase, Geophys. Res. Lett., 5(12), 997-1000, doi:10.1029/GL005i012p00997.

    Brewer, P. G., J. L. Sarmiento, and W. M. Smethie (1985), The Transient Tracers in the Ocean (TTO) program: The North Atlantic study, 1981; The tropical atlantic study, 1983, J. Geophys. Res., 90(C4), 6903-6905, doi:10.1029/JC090iC04p06903.

    Burkholder, K. C., and M. S. Lozier (2011), Mid-depth Lagrangian pathways in the North Atlantic and their impact on the salinity of the eastern subpolar gyre, Deep Sea Res., Part I, 58(12), 1196-1204, doi:10.1016/j.dsr.2011.08.007.

    Caldeira, K., and M. E. Wickett (2003), Anthropogenic carbon and ocean pH, Nature, 425(6956), 365-365, doi:10.1038/425365a.

  • Related Research Results (3)
  • Similar Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark