A System in the Wild: Deploying a Two Player Arm Rehabilitation System for Children With Cerebral Palsy in a School Environment

Article English OPEN
Holt, R ; Weightman, A ; Gallagher, J ; Preston, N ; Levesley, M ; Mon-Williams, M ; Bhakta, B (2013)
  • Publisher: User Experience Professionals Association
  • Subject:
    mesheuropmc: education

This paper outlines a system for arm rehabilitation for children with upper-limb hemiplegia resulting from cerebral palsy. Our research team designed a two-player, interactive (competitive or collaborative) computer play therapy system that provided powered assistance to children while they played specially designed games that promoted arm exercises. We designed the system for a school environment. To assess the feasibility of deploying the system in a school environment, the research team enlisted the help of teachers and staff in nine schools. Once the system was set up, it was used to deliver therapy without supervision from the research team. Ultimately, the system was found to be suitable for use in schools. However, the overriding need for schools to focus on academic activities meant that children could not use the system enough to achieve the amount of use desired for therapeutic benefit. In this paper, we identify the key challenges encountered during this study. For example, there was a marked reluctance to report system issues (which could have been fixed) that prevented children from using the system. We also discuss future implications of deploying similar studies with this type of system.
  • References (23)
    23 references, page 1 of 3

    Anderson, F., Annett, M., & Bischof, W. F. (2010). Lean on Wii: Physical rehabilitation with virtual realist Wii peripherals. Studies in Health Technologies and Informatics, 154, 229-34.

    Boyd, R. N., Morris, M.E., & Graham, H. K. (2001). Management of upper limb dysfunction in children with cerebral palsy: A systematic review. European Journal of Neurology, 8(5), 150-166.

    Chang, Y.-J., Chen, S.-F., & Huang, J.-D. (2011). A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities. Research in Developmental Disabilities, 32(6), 2566-70.

    Chappell, F., & Williams, B. (2002). Rates and reasons for non-adherence to home physiotherapy in pediatrics. Physiotherapy, 88(3), 2-11

    Cox, D., Weze, C., & Lewis C. (2005). Cerebral palsy and ageing: A systematic review. Scope. Available from http://www.scope.org.uk/help-and-information/cerebral-palsy/ageing-andcerebral-palsy.

    Deutsch, J. E., Borbely, M., Filler, J., Huhn, K., & Guarrera-Bowlby, P. (2008). Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Physical Therapy, 88(10), 1196-1207

    Fluet, G. G., Qiu, Q., Kelly, D., Parikh, H. D., Ramirez, D., & Adamovich, S. V. (2010). Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Developmental Neurorehabilitation, 13(5), 335-345.

    Imms, C. (2008). Children with cerebral palsy participate: A review of the literature. Disability and Rehabilitation, 30(24), 1867-1884.

    Jackson, A. E., Holt, R. J., Culmer, P. R., Makower, S. G., Levesley, M. C., Richardson, R. C., Cozens, J.A., Mon-Williams, M., & Bhakta, B.B. (2007). Dual robot system for upper limb rehabilitation after stroke: The design process. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 221(7), 845-857

    Jaspers, E., Desloovere, K., Bruyninckx, H., Klingels, K., Molenaers, G., Aertbelien, E., Gestel, L.V., & Feys, H. (2011). Three-dimensional upper limb movement characteristics in children with hemiplegic cerebral palsy and typically developing children. Research in Developmental Disabilities, 32, 2283-2294.

  • Metrics
    No metrics available
Share - Bookmark